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Abstract

In order to increase our knowledge of the sound transmission and radiation processes of
lightweight wall and 
oor structures, theoretical models are needed. Detailed models may
form a valuable tool. In lightweight 
oor structures, impact sound insulation is perhaps the
most important property to consider. This thesis presents an overview of various solution
strategies that may be useful in �nding a theoretical model for impact sound insulation.
Expressions for the point mobility of in�nite plates driven by a rigid indenter are derived.
These expressions are needed when determining the deformation close to the excitation area,
which is important when studying impact noise to properly describe the interaction between
the source and the 
oor. A detailed three-dimensional thick-plate analysis is used. The
excitating pressure is found by means of a variational formulation. The point mobility is
calculated by means of numerical integration. The excitation force provided by the ISO tap-
ping machine is examined, partly in relation to the three-dimensional deformation analysis.
Results found in the literature are reviewed and reconsidered. Low-frequency asymptotes are
derived. A more general impact force description is derived, suited for arbitrary frequency-
dependent mobilities of the 
oor structure. The frequency-dependency of the mobility can
be due to local e�ects, investigated by means of thick-plate theory, and/or global e�ects,
investigated by means of a spatial Fourier transform method. A theoretical model for a
point-excited simple lightweight 
oor is presented. The model is used for the prediction of
impact noise level. A comparison between numerical computations and measurements found
in the literature is performed. A relatively good correspondence between measurements and
calculations can be achieved. Lightweight walls (and 
oors) are often designed as a frame-
work of studs with plates on each side. The studs can be seen as walls in the cavity, thus
introducing �niteness. A prediction model for airborne sound insulation including these ef-
fects is presented. Due to variabilities, no structure can be perfectly periodic. The e�ects of
near-periodicity are studied by means of transform technique and the expectation operator.
The near-periodicity leads to an increase of the damping (if material damping is present).
Resilient devices are commonly used in lightweight structures to decrease the sound trans-
mission in a broad frequency band. Applications of such devices may be found, for example,
in resiliently mounted ceilings in aeroplanes, ships and buildings. A measurement method
to characterise the two-port acoustic properties of resilient devices is presented.
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Contents of the thesis

The focus of the present thesis is on sound
transmission through lightweight building el-
ements. This includes both airborne sound
insulation and impact sound insulation. Not
included is the 
anking transmission, which
however is an important path of sound trans-
mission in lightweight building structures.

It should be mentioned that when the
project started, the focus was only on impact
sound insulation, this being the most impor-
tant problem. However, as airborne sound
insulation problem is simpler in some ways,
it can be used to show some special aspects
more clearly.

Description of Part I:

Overview of �eld of re-

search

An introduction

The overview starts with an introduction that
describes in a general discussion which pa-
rameters and aspects are important when
studying the acoustics of lightweight struc-
tures. Both theoretical and empirical results
are discussed, and the papers included in the
thesis are introduced in this context.

More about periodicity

Periodicity is one of the typical features of a
lightweight building structure. Di�erent ap-
proaches to take the periodicity into account
are presented, as well as some theorems and
formulas required.

Moment reaction and coupling

The e�ects of moment reactions between the
beams and the plates are not included in the
papers, but are for the sake of completeness
included in this chapter.

Power and sound radiation

Radiated power is an important measure of
the sound radiation of a structure. Di�erent
approaches are presented and discussed. The
chapter shows that the Cremer and Heckl for-
mula for radiated power can be derived in dif-
ferent ways. This chapter is considered to be
only an overview.

Which are the important param-
eters?

A parameter study is included in order to in-
vestigate which parameters in a lightweight
structure are the most important in terms
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of the impact noise level. The largest pos-
itive e�ects (that is, in decreasing the im-
pact sound level) are gained if the construc-
tion depth is increased (when mineral wool is
present in the cavity).

Summary and concluding re-
marks of the thesis

Part I ends with a summary of the entire the-
sis, and some of the conclusions drawn are
presented.

Description of Part II: The

included papers

Paper A: Prediction models of
impact sound insulation on tim-
ber 
oor structures; a literature
survey [1]

To develop new types of lightweight wall and

oor structures it is important to increase
the knowledge of the transmission and radia-
tion processes for such structures. To do so,
detailed models based on deterministic and
statistical assumptions may form a valuable
tool. In lightweight 
oor structures, impact
sound insulation is perhaps the most impor-
tant factor to consider. This paper gives an
overview of various solution strategies that
may be useful in �nding a prediction model
for impact sound insulation.

Paper B: Rigid indenter excita-
tion of plates [2]

The paper presents expressions for the point
mobility of in�nite plates driven by a com-
pletely rigid indenter. The problem is of
general interest in connection with the ex-
citation and transmission of structure-borne
sound. The indenter is assumed to be circu-
lar, weightless, and sti� compared with the
plate. A rigid indenter is assumed to provide
a better approximation of the actual situa-
tion than a soft indenter would, e.g when a
hammer acts on a wooden plate. A detailed
three-dimensional analysis is performed. Tra-
ditionally, the problem is solved in approx-
imate terms by assuming a pressure distri-
bution at the interface between the indenter
and the plate. In the present study, a pres-
sure distribution is also assumed, an optimal
choice of the pressure amplitude being found
by means of a variational formulation. Nu-
merical results are presented and discussed,
the discrepancy between the results obtained
and the perfectly rigid indenter being exam-
ined.

Paper C: The interaction be-
tween the ISO tapping machine
and lightweight 
oors [3]

The ISO standard tapping machine, used as
an excitation source in rating the impact-
sound level of a 
oor structure, interacts with
the 
oor structure during the hammer im-
pact. Expressions for the force spectrum due
to the impact are presented. The 6 dB di�er-
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ence at low frequencies of the force spectrum,
evident in measurements, and reasons for it,
are discussed. The interaction is investigated
by use both of simpli�ed lumped models and
arbitrary frequency-dependent models. Lo-
cal e�ects due to indentation near the point
of impact and to global e�ects due to sti�-
eners are included in the description of the
mobility involved. Numerical results are pre-
sented, where it is concluded that both the lo-
cal and the global e�ects of the driving point
mobility are important in describing the force
spectrum caused by the interaction between
the tapping machine and the complex 
oor
structure.

Paper D: Prediction model
for the impact sound level of
lightweight 
oors [4]

Lightweight 
oors are often troubled by poor
impact-sound insulation. In order to develop
and explain structures with acceptable insu-
lation, a deterministic prediction model was
developed. The paper considers transmission
through the system and the response of the
model. Excitation (as caused by the ISO-
tapping machine) is considered in a separate
paper [3]. The system description employs
a spatial transform technique, making use of
the periodicity of the 
oor structure with the
aid of Poisson's sum rule. The radiated power
is calculated using numerical integration in
the wave-number domain, the radiated power
enabling the impact sound level to be calcu-
lated. Comparisons are made between mea-
surements found in the literature and the pro-

posed prediction model, the e�ects of di�er-
ent excitation models being discussed. A rel-
atively close agreement is achieved, especially
if an elaborate excitation model is employed.

Paper E: The in
uence of �nite
cavities in sound insulation of
double-plate structures [5]

Lightweight walls are often designed as
frameworks of studs with plates on each side
{ a double-plate structure. The studs consti-
tute boundaries for the cavities, thereby both
a�ecting the sound transmission directly by
short-cutting the plates, and indirectly by
disturbing the sound �eld between the plates.
The paper presents a deterministic prediction
model for airborne sound insulation including
both e�ects of the studs. A spatial trans-
form technique is used, taking advantage of
the periodicity. The acoustic �eld inside
the cavities is expanded by means of cosine-
series. The transmission coeÆcient (angle-
dependent and di�use) and transmission loss
are studied. Numerical examples are pre-
sented and comparisons with measurement
are performed. The result indicates that a
reasonably good agreement between theory
and measurement can be achieved.
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Paper F: Near-periodicity in
acoustically excited sti�ened
plates and its in
uence on vi-
bration, radiation and sound
insulation [6]

Due to variabilities in the material, the ge-
ometrical con�guration, or the manufactur-
ing properties, a structure that is designed to
be spatially periodic cannot be exactly peri-
odic. The presence of small irregularities in
a nearly periodic structure may in
uence the
propagation of the vibration �eld, the �eld
being localised. A number of papers have ad-
dressed such localisation phenomena. This
paper will instead focus on the mean vibra-
tion �eld and its in
uence on sound radia-
tion and sound insulation in a plate sti�ened
by supports or beams. The approach is to
seek a formal solution with the aid of spatial
transform technique (similar to the perfect
periodic case) and then apply the expected
value operator to the solution. Two assump-
tions must then be introduced: I) The reac-
tion forces are statistically independent of a
phase-term that is due to the irregularity, and
II) the mean �eld is periodic. The approach
is presented in general terms, the speci�c con-
�guration (a sti�ened plate) being presented
as an example. Numerical results are pre-
sented and discussed, and it can be seen that
the small irregularities cause an increase in
sti�ness and damping (when material damp-
ing is present).

Paper G: Measurement of the
acoustic properties of resilient,
statically tensile loaded devices
in lightweight structures [7]

Resilient devices are commonly used in
lightweight structures to decrease sound
transmission in a broad frequency band. Ap-
plications of such devices may be found, e.g.,
in resilient mounted ceilings in aeroplanes,
ships and buildings. A measurement method
to characterise the frequency dependency of
the transfer sti�ness and the input sti�ness
of the resilient device is presented. The me-
chanical characteristics of the measurement
method are investigated. In addition, some
resilient devices used in buildings are anal-
ysed with respect to acoustic properties. Pa-
rameters such as static load and mountings
for the devices are considered and handled
by means of statistical analysis.
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Overview of �eld of research
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Chapter 1

An introduction

The development of new building systems
has intensi�ed. Such building systems are
often lightweight, and developed to be used
in load-bearing structures and dwellings. Al-
though systems of this sort have many advan-
tages, particularly that of low weight, they
often fail to provide adequate sound insula-
tion.

The term 'lightweight building systems'
has no restriction in material choices, and the
same is true for the theoretical models devel-
oped in this thesis. However, the examples
in this thesis are mainly focused on timber
structures.

For a major part of the last century,
�re regulations have restricted builders in
Scandinavia from using timber in the load-
bearing structures in buildings more than
two storeys high. However, the introduc-
tion of performance-based building codes in
the 1990s has created new opportunities for
timber constructions, and in recent years a
number of residential housing projects with
timber frames have been launched in Scandi-
navia [8].

The building codes in the Nordic coun-
tries give limit values for airborne noise and

for impact noise. Airborne noise is sel-
dom a problem in lightweight building con-
structions. However, the performance of
lightweight 
oors regarding structure-borne
noise is often insuÆcient in relation to the
requirements from the tenants. Previous
design solutions have led to complaints re-
garding footsteps and similar noise sources.
Such sources give, for lightweight 
oors, high
sound levels at low frequencies. Therefore,
it is important to �nd design solutions that
suppress the transmission at low frequencies
[9].

In order to develop the sound insulation
in lightweight buildings, a comprehensive de-
scription of the structure is needed on all lev-
els: material descriptions, element descrip-
tions, descriptions of the connections, and
global descriptions including the acoustic re-
sponse.

Existing theoretical models all rely on sim-
pli�ed assumptions and are often developed
for heavy, homogenous structures such as
concrete. The main purpose of the research
project in which this thesis is included is to
develop new theoretical models with a high
level of complexity. It would then be pos-
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1.1 Di�erent approaches An introduction

sible to describe the substantial changes in
the sound insulation caused by details in
the lightweight structure. This is impor-
tant in the development of new, simpli�ed
lightweight structures with good sound insu-
lation.

The present chapter will consider the
behaviour of lightweight walls and 
oor-
structures and how this behaviour di�ers
from that of heavy and homogeneous build-
ing components. To provide a thorough un-
derstanding of the problems, they are consid-
ered from four di�erent perspectives: 1) var-
ious approaches used in dealing with acous-
tical problems and how applicable these are
to lightweight building construction systems,
2) characteristics of various building materi-
als, 3) the systems-e�ects of di�erent types of
building construction systems, and 4) factors
that lead to sound being experienced as dis-
turbing. By the term systems-e�ects is meant
the extra e�ects that occur when joining dif-
ferent materials or elements in a system.

1.1 Di�erent approaches

Two di�erent approaches to describe and
compute the acoustics of a building can be
distinguished. The one involves determin-
ing the average 
ow of acoustical energy be-
tween separate components, often in com-
bination with the use of empirically based
knowledge or data. The other approach in-
volves a detailed analysis of the problems
from a deterministic point of view, using an-
alytical and/or numerical methods utilising
physical �eld variables such as sound pressure

and vibration velocity. The term determinis-
tic means that one assumes that the laws of
nature imply that no processes are consid-
ered as random (an idealisation of the actual
situation).
The �rst approach includes Statistical En-

ergy Analysis (SEA), other power-
ow meth-
ods { such as those associated with the Euro-
pean standards for computing building acous-
tics (EN 12354 [10]) { and of various semi-
empirical methods. Such an approach is often
successfully used when details of a standard
type of construction are considered, as for ex-
ample when well-known building elements are
combined in EN 12354, or when large varia-
tions in the material or geometrical data have
little e�ect on the result. An approach of
this type is basically pragmatic, emphasis be-
ing stressed on achieving reasonable results
quickly. The amount of information used to
account for the physics involved is minimal,
as each building element is described by a sin-
gle number (for each frequency). The num-
ber in question is the mean of the sound en-
ergy, obtained for each part or component
of the structure separately. The fact that a
minimal amount of information is used repre-
sents both an advantage and a disadvantage.
This approach is particularly appropriate for
dealing with homogeneous and clearly distin-
guishable building elements, such as is used in
traditional building construction systems in
which the elements are heavy, homogeneous
and loosely coupled. Such an approach is not
likely to be successful, however, if one's in-
terest is in discovering new types of solutions
to the problems, since the lack of information
makes it impossible to describe the physics of
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An introduction 1.2 Characteristics of di�erent materials

the situation adequately. Examples of SEA
applied to sound insulation with double wall
systems are Craik [11] and Craik and Smith
[12]. Gerretsen has used a power 
ow ap-
proach [13, 14, 15] mainly dealing with 
ank-
ing transmission and using the sound trans-
mission loss and vibration level di�erences as
parameters. When the direct path is studied,
very simpli�ed models only applied to homo-
geneous slabs are used. These papers were
the basis for EN 12354 [10]. The power 
ow
approach can also be described as �rst order
SEA as no back coupling is taken into ac-
count. As an example of semi-empirical pre-
diction models, the model described by Sharp
[16] should be mentioned. These references
are just a few examples, for there are many
other papers that also could have been men-
tioned.
Since the other deterministic approach is

generally more complicated and theoretically
complex, the computations can easily fail due
to the uncertainty in the input data; the com-
plexity often leads to a high sensitivity to
variations in the input data. Although the
numerical methods employed (such as FEM)
are often time-consuming, the use of a de-
terministic model often provides highly use-
ful information and clear insight into a prob-
lem, as well as proving good opportunities for
achieving optimal solutions. Also, one can
always introduce statistics afterwards (such
as through repeated simulations of the prob-
lem).
This thesis is mainly concerned with use

of the latter, more detailed approach, espe-
cially in the papers [2, 3, 4, 5, 6]. A more de-
tailed account of the theoretical approach is

provided in [1], included in the thesis. Many
of the results reported in this introduction,
as well as in [7] (included in the thesis), are
based on measurements.

1.2 Characteristics of dif-

ferent materials

The materials used in a lightweight construc-
tion di�er in their characteristics from those
used in traditional constructions. Tradi-
tional constructions often consist of concrete,
steel (as reinforcement) and brick. In con-
trast, lightweight constructions often contain
wood, mineral wool, plasterboard, chipboard,
plywood and thin-walled steel as elements.
Whereas sawdust or cinders were frequently
used as �lling materials in wooden construc-
tions earlier, these have been largely replaced
by mineral wool (which provides better sound
insulation and is lower in weight). The air
between the di�erent components can also
be viewed as a material that has interesting
characteristics of its own, due to its viscosity.
The speci�c characteristics for these various
materials will be considered shortly.

Wood is inhomogeneous and orthotropic,
in contrast to concrete (even if slightly or-
thotropic when steel-reinforced concrete is
used). This implies that the structure-borne
waves travel with di�erent speeds, depend-
ing upon their direction. In beams and
studs, pure wood is often used. However,
the bending sti�ness along the beam then
dominates, implying that directionality is not
particularly important in wooden structures
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1.2 Characteristics of di�erent materials An introduction

of this sort. Thus, methods for computing
acoustical behaviour generally do not need
to be specially adapted to the orthotopic na-
ture of these constructions. The methods
we have developed [4] are largely based on
principles conceived in connection with ship-
building [17]. In the case of massive wooden

oor structures, orthotropic considerations
can nevertheless be important.
Mineral wool can be described as having

both a structural phase and a gas phase.
However, in most material descriptions one
ignores this, the material being described as a
gas in which there is an extra damping e�ect.
The simplest way of presenting the damping
is by direct use of the 
ow resistance of the
product. This is not entirely true, however,
since structural movement and heat conduc-
tion in the structure also play a role. The
next step in the direction of greater detail is
to utilize an empirical model of the material
that at least indirectly takes account of these
various phenomena [18]. Such a model, which
is employed in [4], is easy to use. More ad-
vanced models in which waves are seen as be-
ing propagated in both phases are also avail-
able [19, 20]. The role of mineral wool in
lightweight constructions is important. Ex-
periments have shown the density and thick-
ness of it to be important parameters, e.g.,
as shown in [21]. Some of the conclusions in
[21] are brie
y recollected below: The e�ect
of the density of mineral wool is exempli�ed
in Figure 1.1. As can be seen, for glass wool a
density of 26 kg/m3 is the best choice of the
three samples, stone wool with a density of
35 kg/m3 also functioning well, whereas glass
wool with a density of 15 kg/m3 functions less
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Figure 1.1: E�ect of the density of the min-
eral wool on the transmission loss: glass wool 15
kg/m3 (-Æ-), glass wool 26 kg/m3 (-�-) and stone
wool 35 kg/m3 (-�-). 95 mm studs + 70 mm
studs, 95 mm mineral wool, 2�13 mm plaster-
board. After [21].

well. The largest di�erences are for frequen-
cies greater than 250 Hz, although di�erences
are also clearly evident for the lowest frequen-
cies. Figure 1.2 shows the dependence of the
transmission loss on the thickness of the min-
eral wool. If a wall with a total thickness
of 165 mm is �lled with mineral wool only
30 mm thick, the results are inferior to those
obtained when mineral wool 95 mm thick is
employed. If instead the mineral wool is 120
mm thick, the results are better yet for fre-
quencies above 500 Hz and below 125 Hz. It
should, however, be noted that the low fre-
quency results are associated with measure-
ment diÆculties, making these results more
uncertain.

Plasterboard consists of an inner core of
plaster reinforced on both sides by an outer
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An introduction 1.3 The systems-e�ects of building constructions
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Figure 1.2: E�ect of the degree of �lling by min-
eral wool on the transmission loss: for a �ber
thickness of 30 mm (-Æ-), of 95 mm (-�-) and of
120 mm (-�-). 95 mm studs+70 mm studs, glass
wool 15 kg/m3, 2�13 mm plasterboard. After
[21].

layer of cardboard, resulting in a sandwich
structure. The characteristics of the plaster
material itself are not so well known; it is rel-
atively sti�, heavy and undamped (although
it is more elastic and lighter in weight than
concrete); it is probably isotropic. Of greater
interest, however, is its behaviour as a com-
ponent. The cardboard layers are important
not for acoustical reasons but for facilitat-
ing production of the plasterboard, as well
as for static and mechanical reasons. The re-
inforcement that the cardboard provides in-
creases the shear deformations of the plaster
layer, making it an important aspect already
at low frequencies. When thus reinforced,
plasterboards shows behaviour similar to that
of thick plates, despite being quite thin [22].

1.3 The systems-e�ects

of building construc-

tions

It is important to attend not simply to what
happens within a given material or compo-
nent (such as a plate or a beam), but also to
what happens when di�erent parts are cou-
pled together. This is particularly true for
lightweight constructions, since these consist
of many di�erent components, often joined
together in a rather complicated way. In ad-
dition, a very broad frequency range is of in-
terest, at least 50{5000 Hz, and in most cases
still broader. The range is determined in part
by the codes and classi�cation standards that
apply, and in part by what is important for a
subjective evaluation of the construction. A
broad frequency interval creates problems for
the acoustician, as the wavelengths varying
from several meters to only a few centimeters
in length. This in turn a�ects what is impor-
tant to consider when describing a construc-
tion; for example, the large-scale boundary
conditions of the building structures or the
anchoring of a single screw.

One of the most important assumptions
when dealing with a given structure by use
of the �rst approach mentioned above (e.g.,
SEA-like approaches), is that the �eld vari-
ables within each component (wall or room)
are homogeneous. This means that, for any
given frequency, the �eld (i.e., the sound pres-
sure or vibration velocity) can be described
by a single number. Nightingale [23], how-
ever, showed the �elds to be far from con-
stant over the area involved by measuring vi-

7



1.3 The systems-e�ects of building constructions An introduction

Figure 1.3: A lightweight wall and a lightweight

oor construction adjoining it were built in the
sound-transmission laboratory at LTH, Lund.
Photo: Lars-G�oran Sj�okvist.

bration velocities in lightweight wooden con-
structions. The measurements obtained sug-
gest the vibrational energy to decrease with
increasing distance from the source (or from
the junction in question). This is to be ex-
pected from a structure that repeats itself in
a nearly periodic way [24] { which is just what
a lightweight structure reinforced with joists
does. The joists and studs are located at
some basic spacing, but there is always some
degree of variation. In this thesis, this situa-
tion is more closely examined in [6]. Exper-
iments in this area have been carried out by
Sj�okvist, as described in part (the experimen-
tal setup) in [25] and more thorough in [26].
The results and experimental setup found in
[26] are brie
y described below. As shown
in Figure 1.3, a lightweight wall 
anked by a
lightweight 
oor construction was built in an
air-transmission laboratory. Various 
ank-
transmission measurements were performed.

The measurements of interest involved plac-
ing an ISO tapping machine at 6 di�erent
positions in the sending room, and at each
of these positions the vibration velocity was
measured at 10 randomly chosen positions
in the recipient room. For each set of mea-
surements, a linear regression was computed,
where the distance from the separating wall
served as the parameter. The aim was to
determine whether the vibration velocity de-
creased with distance from the source. The
results indicate a decrease by 2{6 dB/m, see
Figure 1.4. This agrees with Nightingale's
�ndings and shows the �rst approach referred
to above { the simpler one { not to be appro-
priate for a construction of this type. A fur-
ther observation of interest in Nightingale's
[23] measurements is that the plates (in this
case the OSB plates1) being �nite in size and
smaller than the 
oor structure as a whole
is important for the manner in which vibra-
tional energy is spread through them. One
can clearly see that when vibration passes
over a plate junction, the level of vibration
decreases.

An important di�erence between building
construction systems of the traditional and
of the lightweight type is in the use of a sim-
ple slab or plate in the former case and of
double plate in the latter. This is perhaps
the most obvious di�erence between the two
building construction systems and the one
which has generated the greatest amount of
research and contributed most to theory de-
velopment [27, 28]. It also represents the area

1OSB means Oriented Strand Board and is a type

of chipboard.
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Figure 1.4: Sound transmission attenuation of
a lightweight 
oor structure, 
. Each circle Æ
represents the mean of 6 regressions over 10
measuring positions for each third octave band.
The asterisk � represent the corresponding oc-
tave bands. After [26].

in which the advantages of lightweight con-
structions are most obvious. The sound in-
sulation a simple construction provides is as
a �rst rough approximation determined by
the mass law, i.e., the wall's weight alone be-
ing decisive for the sound insulation, and the
transmission loss increases by 6 dB/octave2.
A double construction, in contrast, can con-
sist of two parallel plates separated by a cav-
ity. The cavity can be �lled either with air
or with mineral wool. If one ignores the
complications that can be introduced by the
presence of mechanical connections by way
of beams and studs (which, however, is the
main subject of the thesis), one can conceive
a double construction as consisting of two

2An octave represents a doubling of the frequency.

simple constructions located in series. This
makes it easy to understand why double con-
structions are advantageous: In the ideal case
there are simply two layers of mass, one af-
ter the other, increasing the transmission loss
to 12 dB/octave. In reality the transmis-
sion loss is never that great, partly because
of the behaviour of beams and studs, and
partly because of a resonance phenomenon
that typically occurs in the low frequency
range. This phenomenon, which can be de-
scribed in terms of the inertia at the outer
surface as well as the sti�ness of the enclosed
space (even air has sti�ness), is referred to as
the construction's basic resonance frequency.
It is perhaps the most important design pa-
rameter in a double construction. In prin-
ciple, the resonance frequency should always
be as low as possible [29]. The cavity can
be �lled (partly or completely) with mineral
wool. This has a positive e�ect in two dif-
ferent ways, partly that of the resonance be-
ing reduced by damping, and partly that of
a �ctive increase in the volume of the cavity
being produced through the transition from
adiabatic to isotherm compression { leading
to a decrease in the resonance frequency. The
studs or joists in the wall or 
oor structure
are very important for the acoustic behaviour
of the structure. If a double plate struc-
ture consists of a framework of studs, the
studs will not only in
uence the vibration
�eld directly, i.e., short-cutting the plates as
sound bridges [30, pp. 462{474], but also af-
fect the acoustic �eld in the cavities. The
studs can be seen as walls within the cavi-
ties, thus introducing �niteness, which leads
to resonances. Moreover, the studs are typi-

9



1.3 The systems-e�ects of building constructions An introduction

cally given equal spacing, making the struc-
ture periodic (or at least nearly periodic, as
discussed above). The periodicity not only
causes the physics to involve some certain as-
pects { as passbands, stopbands and locali-
sation [1] { it also makes it possible to re-
duce information in the prediction models, as
in [4, 5, 6]. Recent measurements on wood
stud walls, made by Bradley and Birta [31],
show that the Lin and Garrelick theory [28]
explains the most important low-frequency
features of sound transmission through these
wood stud walls. This fact can be seen as a
con�rmation that the approach taken in this
thesis, i.e., a spatial transform approach tak-
ing into account the periodicity, is appropri-
ate.
A 
oating 
oor is a type of double con-

struction which, although frequently serving
as a complement to massive constructions,
can also be used in connection with a system
of lightweight joists. Such a 
oor has many
positive acoustic characteristics, particularly
as regards high frequencies, whereas it is less
e�ective in the case of low frequencies. It
is also less well suited than other types of

oors in terms of springiness and deforma-
bility. Having a strongly damped material
located between the two surfaces is always
advantageous here. If the layer between the
two plates, instead of being a material that is
deformed locally (as a resiliency e�ect, such
as in the case of a foam or of mineral wool),
is a layer that shears, such as a rubber mat,
one obtains an extra damping e�ect without
the negative e�ects that a 
oating 
oor would
otherwise produce. Another solution is to let
the two plates slide over each other more or

less friction-free.
When the distance between two plates be-

comes small, viscosity and other e�ects in
the air gap between them become notice-
able. One can distinguish between two sep-
arate (but closely related) phenomena: res-
onance and damping. The resonance phe-
nomenon was �rst reported by Warnock [32]
in a large series of measurements on wooden
beam structures. In the sound level di�erence
curve, the di�erence taken between the trans-
mission loss for a construction with a single
plate and one with two plates, a small but
clear dip was found around 1 kHz. When two
plasterboard plates are put together, there
is always a small air gap between them, one
which can be expected to be somewhat larger
if they are attached suspended to a 
oor
structure. Warnock estimated the air gap to
be 1 mm in size. To determine whether a
phenomenon of this sort could be observed
in other measurements, the data reported in
[21] were analyzed. The results are shown in
Figure 1.5 (also being reported in [33]). A dip
in the curve was found at 1.5 kHz, which ba-
sically corresponds to resonance from an air
gap of 0.5 mm (the plates being masses). The
damping phenomenon was discovered earlier,
see for example [34], where the damping of
steel plates is caused by the layer of air in
between the plates. This phenomenon is due
primarily to the viscosity of air, which has
strongest e�ect when the gap is small, as
is the case in the structures considered here
(perhaps 0.01{1 mm), whereby thermic ef-
fects and friction may also have an e�ect [22].
In experiments, [35], involving freely hanging
coupled plasterboards in which the distance

10



An introduction 1.3 The systems-e�ects of building constructions

between the two plates varied from 0{1 mm,
the damping was found to be optimal at dis-
tances of 0.3{0.5 mm. The damping achieved
was then approximately � = 0.025 for 63 Hz
and 0.02 for 1000 Hz; without the air gap,
the damping was approximately � = 0.013
and 0.012, respectively, for the same frequen-
cies. To this phenomena is then also added
the screw connections between the two plates,
which is a (nearly) periodic pointwise connec-
tion with possibly some resilient behaviour
due to local deformation. A complete me-
chanical model of this situation { including
viscous, thermic and mechanical e�ects { has
not yet been achieved (even though attempts
were made in [22, 33]3). Thus, in all exam-
ples in this theses only single plates are con-
sidered.

It is quite common to use small resilient el-
ements in a lightweight double construction
so as to recapture some of the weakness lost
through the presence of beams and studs. Re-
silient channels are frequently employed, for
example, as elements in wooden 
oor struc-
tures. These are beams that can be de-
formed in their cross-section. The behaviour
of the resilient channel is examined experi-
mentally in [7], included in the thesis. The
resilient channel is also studied by Bradley
and Brita [36], containing both experimental
results as well as simpli�ed models of the ef-
fects the channel has on a lightweight wall.
Another example is the use of either wooden
or thin-walled steel studs in lightweight walls,
where the latter can also be seen as being

3This subject could have been included in the the-

sis if my computer had not been stolen.
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Figure 1.5: Di�erence between use of a sin-
gle and of a double layer of plasterboard. The
continuous line (|) represents the mean. Data
taken from [21].

beams that can be deformed in their cross-
section. The mechanical description of this
phenomenon is not yet adequate, although
much can be learned from experiments that
have been carried out. The type of studs cho-
sen has been shown to be an important pa-
rameter [21]. In walls containing 45 mm studs
the transmission loss Rw is increased from 42
dB to 47 dB (Rw being the weighted single
number transmission loss according to ISO
717-1 [37]), when a change from wooden studs
to thin-walled metal studs was preformed
(with use of mineral wool 30 mm thick at
15 kg/m3, 2�13 mm plasterboard)(see Figure
1.6). One can readily see that the di�erence is
considerable and that thin-walled steel studs
are 5{15 dB better at frequencies above 250
Hz. For frequencies below 100 Hz the rela-
tion is the opposite. This could be a random
result, however, since for low frequencies the
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Figure 1.6: Di�erence between use of wooden (-
�-) and of steel studs (-Æ-): 45 mm studs, 30 mm
thick mineral wool 15 kg/m3, 2�13 mm plaster-
board. After [21].

measurement error is large, but is more likely
due to the extra weight of the wooden studs
compared to the thin-walled steel studs.

In order to build successfully using
lightweight building techniques, one also
needs to deal successfully with 
anking trans-
mission problems. The junction between
walls separating adjoining apartments and

oor structures is constructed in a manner
aimed at reducing the transmission of 
ank-
ing sounds. In principle, this can be accom-
plished by means of completely separating
the construction frameworks of the adjoining
apartments from each other. Although sepa-
ration, if it can be accomplished, is always a
safe solution, it is often not a practicable one,
since the framework need to be stabilised in
order to manage e.g. horizontal wind loads.
Although adequate theoretical models for the

anking transmission have not yet been de-

��������	

Figure 1.7: Junction between party wall and

oor structure. Note that the OSB-plate is con-
tinuous across the wall. The 
oor construction
is as follows: Carpet or parquet, 25 mm anhy-
drite, resilient layer, OSB, 400 mm wooden joist
and 400 mm mineral wool 26 kg/m3, resilient
channels, 2�13 mm plasterboards. Orgelb�anken,
Link�oping [9].

veloped, practical solutions can be found in
[38, 9]. Although one approach is to only
stabilize the structure at its sti�est points,
there are also more unconventional solutions
that if adequately worked out, can yield sat-
isfactory results. Orgelb�anken, for example,
achieved excellent results with use of a board
of OSB (a sort of chipboard) that was contin-
uous through the junction as shown in Figure
1.7 and described more closely in [38, 9].

For lightweight 
oor structures, footsteps
represent the primary source of disturbances.
At low frequencies, the sound level is deter-
mined primarily by the person's body weight,
foot weight, and number of steps per second.
At high frequencies, the type of footwear
is relevant [39]. An important di�erence
between the sound of footsteps and other
sources of noise is that, even at low frequen-
cies, footsteps produce a high degree of noise

12
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disturbance. In most countries, assessments
of the level of noise produced by footsteps in-
volve use of a standardised tapping machine
as a source of sound (whereas in Japan use
is made of a machine on which rubber tires
are mounted, the idea being that the excita-
tion more closely resembles that of a walk-
ing person). The tapping machine consists of
�ve steel cylinders. These are made to strike
the beam structure being tested at an over-
all repetition frequency of 10 Hz. For massive

oor structures, regardless of whether bare or
covered, the characteristics of the force spec-
trum of this process have long been known
[30, 40, 41]. This force spectrum cannot nec-
essarily be assumed to apply, however, to a
lightweight 
oor structure. The force spec-
trum that the tapping machine produces on
such a structure is therefore analysed in this
thesis [3]. The di�erence can be described
brie
y as being that for a massive 
oor struc-
ture with a resilient layer in terms of 
oor
covering, with a deformation of the 
oor cov-
ering. A loss of energy will then only oc-
cur at that deformation zone. In contrast,
in a lightweight 
oor structure, loss of en-
ergy also takes place through the propaga-
tion of waves within the plate, a local de-
formation occurring primarily in the plate's
cross-section (where the degree of local de-
formation can be determined according to the
reference [2], included in this thesis). In de-
termining the force spectrum of a lightweight

oor structure, one needs in principle to take
account of the entire structure (individual
beams and the like included). The force spec-
trum plays an important role, since it can
vary in a quite large span; for low frequencies

it can vary as much as 6 dB, and for high fre-
quencies the span is still greater. The 6 dB
variation can be found by considering the ex-
treme cases of the cylinder leaving the plate
or not [3, 41].

It should also be noted that even though
the excitation situation is quite di�erent in
the case of impact noise compared to air-
borne noise, there are some similarities: In
the latter case, a di�use sound �eld is as-
sumed meaning that all angles of incidence
have the same probability, each angle giving
rise to one set of wavenumber. Thus, the
transmission loss is found by integrating over
all possible incident angles. In the former
case, all wavenumbers are excited at once,
but the radiated power (that is the quantity
of interest) is found by means of integrating
over the angles that can be radiated to. Thus,
in both cases the same amount of (possibly
numerical) integration is required.

1.4 How sound is experi-

enced

Acoustics is mostly of importance from the
standpoint of hearing and of how sound and
vibrations are perceived and experienced. In
building acoustics and sound isolation, the
major aim in setting building codes is to see
to it that the sound disturbances that are
experienced do not exceed some reasonable
limit, based on what is generally accepted.
This is the intention of the oÆcial regula-
tions in Sweden contained in BBR [42] and
in SS 025267 / -68 [43, 44], a matter which
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should be borne in mind in discussions be-
tween building contractors and those com-
missioning building projects. The require-
ments for sound insulation that have long
existed were formulated with homogeneous
simple constructions in mind. It has been
found that these requirements do not func-
tion as they should in regard to lightweight
constructions, which behave quite di�erently
in the case of low frequencies than massive
constructions do, low frequencies also being
dominant in connection with footsteps. An-
other quite important aspect of the problem
is that of the source of noise adjusting to
the structure involved; it is more pleasant to
come down hard on one's heels when walking
on a wooden 
oor structure than when walk-
ing on a concrete 
oor. Thus, children might
be more inclined to run around more wildly
on a lightweight 
oor structure than on a con-
crete 
oor (although this is simply an hypoth-
esis). Matters such as these make it impor-
tant to formulate other criteria and building
codes than the traditional ones. Working out
the details of such building codes calls for
widespread and systematic interviews with
those living in such buildings. The results
can then be examined further with the help
of statistical methods in order to relate di�er-
ent objectively measurable results with sub-
jective ratings. A measure that in an optimal
way correlates the subjective ratings with the
objective sound insulation measurement can
then be chosen. Pioneering work in this area
in regard to the impact sound in lightweight

oor structures was carried out by Fasold [45]
and Bodlund [46]. A very useful side-e�ect
of the latter work was the �nding that the

number of residents in an apartment house
who are disturbed by the sound of footsteps
can be estimated from the impact-noise fre-
quency curve of the 
oor structure involved.
This �nding was made use of in the design
of the 
oor structures of the wooden build-
ings erected in Sweden within the framework
of the Nordic Wood Project (in the build-
ing projects W�alludden and Orgelb�anken [9]).
The assessments of interviews with the ten-
ants carried out some time after the houses
were �nished con�rmed the subjective pre-
dictions made. The methods employed are
described in [9] and to some extent in [38].
Lately, laboratory tests of footstep noise and
subjective evaluation have been carried out
[47, 48]. Listening tests showed that using
loudness to evaluate the impact sound yields
a high correlation with listeners' preference
values, also when the tapping machine is used
as the source.

1.5 Summary of the intro-

duction

In conclusion, one can state that to un-
derstand the acoustics of lightweight build-
ing constructions it is not enough to simply
take account of results obtained for massive
constructions. A more detailed approach is
needed, involving deep knowledge and under-
standing of the material contained in such
constructions and of di�erent methods of rel-
evance, together with insight of how di�erent
materials and components can be employed
in conjunction with each other in a way al-
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lowing the system phenomena that are typ-
ical of lightweight constructions to be ade-
quately exploited. It is also important to gain
a greater understanding of how the acoustic
characteristics of lightweight buildings a�ect
how sound is perceived by the inhabitants.
The present thesis presents papers address-

ing most of these aspects, except for the sub-
jective experience.
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Chapter 2

More about periodicity

As was stated in the preceding chapter, pe-
riodicity is one of the typical features of a
lightweight structure. In this chapter various
approaches to take account of the periodicity
in a Fourier transform solution of the gov-
erning equations is dealt with, as this is the
main idea behind the prediction models pre-
sented in this thesis. This chapter is a com-
plement to the literature survey in [1]; the
approach here is more theoretical. Moreover,
even though the number of references herein
is not as large as in [1], some additional refer-
ences of relevance have been found and thus
included [49, 50, 51]. Moreover, compared to
the discussion in [1] the paper by Rumerman
[52] is put forward herein. The approach used
by Mace in [53, 54, 55, 56] is basically the one
used by Rumerman. The fact that the use
of Floqu�et's principle is used in the Rumer-
man's approach but not in the approach fol-
lowing Evseev is described now, as this may
be a key di�erence.

Three approaches are presented: The �rst
is used by Evseev [57], Lin and Garelik [28],
Mace [17] and Takahashi [58], and by the
present author in [3, 4]. This approach will

be denoted Evseev's approach. The second
approach is used by Rumerman [52], Mace
[53, 54, 55, 56], Skelton [49] and by the
present author in [6, 5], and will be denoted
Rumerman's approach. Nordborg [51] uses
the third approach, and will be denoted Nord-
borg's approach.
Urusovskii [50], dealing with double plate

systems, uses a space harmonic approach,
similar, for example to Mead and Pujara [59]
(cf. [1, 60]). This type of approach will not
be discussed further here.
It should also be noted that periodically

supported systems are treated in Morse and
Ingard [61, pp. 662{679, 695], where the situ-
ation of a thin plate periodically loaded with
line impedances is given as a student prob-
lem.

2.1 The basic problem

The basic problem, which in this chapter is
taken to be a plate reinforced by beam sti�-
eners with equal spacing, can be described as
a di�erential equation with a periodic array
of reaction forces. The problem in question
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can be with or without excitation (the later
problem referred to as free wave motion),
and the excitation can be periodic or non-
periodic in space. That gives in total three
cases, roughly corresponding to the three ap-
proaches above, as will be evident. (See also
the discussion in [1].)
The governing di�erential equation de-

scribing the problem can symbolically be
written

S[w] = pe �
1X

n=�1

FnÆ(x� nl); (2.1)

where w(x; y) is the displacement of the plate,
pe(x; y) is the excitation pressure and Fn(y)
is a reaction line force (from the beam sti�en-
ers), and where S is the di�erential operator,
typically the Kirchho� plate operator (other
forms of the operator can thus also apply)

S = B0

�
@2

@x2
+

@2

@y2

�2

� !2m00; (2.2)

where B0 = EI 0=(1� �2) is the bending sti�-
ness per unit width, E is Young's modulus,
I 0 = h3=12 is the moment of inertia per unit
width, � is the Poisson ratio, h is the plate
thickness and m00 is the mass per unit area,
see for example [30, pp. 95{109]. A Fourier
transform of (2.2) in the x-y-coordinates, us-
ing (2.8), becomes

S = B0
�
�2 + �2

�2 � !m00; (2.3)

which is an algebraic expression.
The beams reinforcing the plate can be de-

scribed by a similar di�erential equation,

G[wn] = Fn; (2.4)

where wn(y) = w(nl; y) is the displacement of
the n'th beam, and also the displacement of
the plate at that position (and thus a bound-
ary condition assuring equal displacement in
the intersection). The di�erential operator G
is typically a Euler beam operator

G = Bf
@4

@y4
� !2m0

f ; (2.5)

where Bf = EfIf is the bending sti�ness of
the beam, Ef is the Young's modulus of the
beams, If is the moment of inertia of the
beams and m0

f is the mass per unit length
of the beams. A Fourier transform of (2.5) in
the y-coordinate, using (2.10), becomes

G = Bf�
4 � !2m0

f : (2.6)

In this description the beams a�ect the
plate only as line forces, and no moment cou-
pling is included. This is also the case in the
papers in this thesis [4, 5, 6]. However, in
chapter 3 the moment coupling is introduced.

2.2 Fourier, Floquet,

Bloch and Poisson

Before we proceed with the three approaches,
some general theorems and formulas must
�rst be presented, so that these can be em-
ployed in the succeeding sections.
The main approach to solve di�erential

equations in the thesis is to make use of
the Fourier transform, applied to the spa-
tial coordinates. Those not familiar with the
Fourier transform technique may wish to re-
fer to the standard textbooks in mathematics
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for theoretical physics [62, 63]. However, the
actual transform pair used has to be de�ned:
The Fourier transform pair used in this thesis
is, in the two-dimensional case

u(x; y)=
1

4�2

Z1Z
�1

~u(�; �)e�i(�x+�y)d�d� (2.7)

for the inverse transform (u being an arbi-
trary function), and

~u(�; �)=

Z1Z
�1

u(x; y)ei(�x+�y)dxdy (2.8)

for the forward transform, where � and �
are the transform wavenumbers. In the one-
dimensional case the transform pair is

u(x) =
1

2�

1Z
�1

~u(�)e�i�xd� (2.9)

and

~u(�) =

1Z
�1

u(x)ei�xdx; (2.10)

where x and � can be exchanged by y and
�. If both the one- and the two-dimensional
transform pairs are used, then the symbol �� is
employed instead of ~� in the one-dimensional
case.
Floquet's principle concerning wavemotion

in periodic structures is a useful tool em-
ployed frequently in the thesis. A discussion
of the principle is included below. As no re-
ally adequate proof of the principle has been
found, it is also made probable. Originally
the principle was restricted to solutions of

Mathieu's equation; proof and discussions of
this case can be found, for example, in [62,
pp. 555{557] or [64, 65].
The principle is made most probable if one

consider a simple periodic structure consist-
ing of a cascade of identical substructures,
e.g., a chain of masses and springs [30, pp.
405{415]. It is then found that the ratio of
the value of a �eld variable at the input point
of a substructure to that at the output point
of the substructure is the same for all ele-
ments:

un+1 = une
g;

or by repeated use

u0 = une
�ng; (2.11)

where u is an arbitrary �eld variable. How-
ever, the principle is only made probable by
means of an example. A more elaborate in-
vestigation would be appropriate.
Since the assumed form of the solution in-

dicated in equation (2.11) places no restric-
tion on the exponent g, one may take this
exponent to be complex,

g = a+ ib:

In the simplest cases (as the one discussed in
this chapter), the exponent is either the 'at-
tenuation coeÆcient' satisfying a = 0, or the
'phase coeÆcient' satisfying b = n�, where
n = 0; 1; 2; � � � . The �rst of this cases is re-
ferred to as a pass band, the second as a stop
band.
Brillouin, in his book on wave propagation

in periodic structures [65] discusses Floquet's
and Bloch's principles. Floquet's theorem (or
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principle) can be expressed as follows: A one-
dimensional homogenous Helmholtz equation
with periodic wave-speed can be written

@2u

@x2
+ J(x)u = 0 (2.12)

where J(x) = !2=c2(x) is l-periodic (! is the
angular frequency and c is the wave speed).
According to Brillouin, an equation of the
type (2.12) is called a Hill's equation, and
has the solution

u(x) = A(x)e�x (2.13)

where A(x) has a period l. This means, for
instance,

u(x) = e�lu(x� l)

and
u(0) = u(nl)e��nl

which is the same result as (2.11) if g = �l.
The general solution is then built up by two
solutions of the form, (2.13)

u(x) = A1(x)e
�x + A2(x)e

��x:

Bloch's theorem is simply the extension of
Floquet's theorem to a three-dimensional pe-
riodicity, according to Brillouin. A three-
dimensional periodicity is of interest, for ex-
ample, in wavemotion through crystal lat-
tices. In the `Dictionary of acoustics' [66]
only the term Bloch wave is used:

Bloch wave { in a medium or
waveguide whose structure is peri-
odic in the propagation direction a
propagating single-frequency wave

in which the same pattern is re-
peated within each cell or period
of the structure, with a �xed phase
shift from one cell to the next (F
Bloch 1928). [...]

This de�nition or description corresponds to
equation (2.13). In the present thesis only the
term Floquet's principle (or theorem) will be
used, and only one-dimensional periodicity is
considered.
The case of a periodically driven inhomoge-

neous Hill's di�erential equations is not con-
sidered by Brillouin. However, it is quite sim-
ple to show that a version of Floquet's prin-
ciple holds also for this case. The inhomoge-
neous Hill's di�erential equation can be writ-
ten

@2u

@x2
+ J(x)u = e�ikxx; (2.14)

where once again J(x) is l-periodic, J(x) =
J(x� l). We are only interested in the steady
state solution, so the solution will be of the
form

u(x) = A(x)e�ikxx; (2.15)

where A(x) is still undetermined. Insert this
assumption in equation (2.14), which yields

J(x) = A�1(x) (1� L[A(x)]) ; (2.16)

where the operator L is due to the double
derivation of (2.15), and is de�ned as

L[A] = @2A

@x2
� i2kx

@A

@x
� k2xA:

It should here be noted that L operating on
A do not a�ect any possible periodicity; if
A is periodic so is L[A]. By inspection of
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equation (2.16) it can be seen that the left
hand side of the equation is l-periodic, which
means that also the right hand side of the
equation is l-periodic. This result is ful�lled
only if A(x� l) = A(x) as this is the only pa-
rameter with a x-dependency. A(x) is there-
fore also l-periodic. Thus, equation (2.15) is
the Floquet's principle in this case, where � is
exchanged by �ikx if we compare with (2.13).
It should also be mentioned that the same
type of argument can be used in the free wave
case. The solution is then assumed to be of
the form

u(x) = A(x)e�x;

which after some manipulation leads to

J(x) = �L[A(x)]=A(x);

where both the left and the right side has to
be l-periodic.

The situation so far is that we know that
Floquet's principle holds for free and forced
wave propagation in the Hill-type of di�er-
ential equations, and we have a similar rela-
tion (2.11) for simpli�ed structures (however
only shown in examples). We do not have
a Floquet theorem that holds for more gen-
eral types of di�erential equations or waveg-
uides, such as a plate reinforced by beams at
a periodic distance. In [1] the present author
uses simple geometrical arguments to show
that Floquet's theorem holds also in this case.
However, also this type of situation can be
brought back to the Hill equation, as will be
shown in a simple example: Consider a peri-
odically sti�ened plate as described by equa-
tion (2.1{2.2). The excitation is of the form

pe = e�ikxx�ikyy. Thus, the governing equa-
tion can be written

B0

 
@2

@x2
� k2y

!2

w � !2m00w

= e�ikxx�
1X

n=�1

FnÆ(x� nl); (2.17)

where the y-dependency is suppressed. The
reaction forces Fn are described by equations
(2.4{2.5). If these equations are introduced
in (2.17), we can after some rearrangements
write

B0

 
@2

@x2
� k2y

!2

w � J(x)w = e�ikxx; (2.18)

where

J(x) = !2m00 �G
1X

n=�1

Æ(x� nl)

which is l-periodic and ful�lls J(x) = J(x�l).
G is found in equation (2.6) with � exchanged
by ky. Equation (2.18) is thus of Hill-type,
but of order four instead of two. However, as
was seen in the discussion of the forced Hill
equation and especially in equation (2.16),
the order of the di�erential equation has no
signi�cant importance for Floquet's principle.
Thus, the principle holds also in this case.
For the general driven waveguide Floquet's
principle is written

w(x� nl) = w(x)e�ikxnl; (2.19)

where kx is the forced wavenumber, caused by
the excitation of the form pe = p̂e exp(�ikxx).
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2.3 Evseev's approach More about periodicity

A very useful tool in the analysis of in�nite
sums is the Poisson sum formula. It relates
one in�nite sum with another, that in some
cases can then be written in a closed form by
means of the geometric series. The Poisson
sum can be derived by contour integration
and Fourier transformation (cf. Morse and
Feshbach [62]) and can be written

1X
n=�1

g(an) =
2�

a

1X
n=�1

~g(2n�=a) (2.20)

where ~g is the Fourier transform of g. One
useful example of the Poisson sum formula is
that it can be used to show that

1X
n=�1

ei�nl =
2�

l

1X
n=�1

Æ(�� 2n�=l); (2.21)

which states that a sum of harmonics equal a
sum of Dirac functions.

2.3 Evseev's approach

The problem is described by an inhomo-
geneous di�erential equation, described in
equation (2.1), and a boundary condition
(equal for al n), described in equation (2.4).
In Evseev's approach the driving pressure
does not need to be periodic; it can especially
be a point force pe = p̂eÆ(x� x0). Thus, Flo-
quet's principle is not applicable in this case.
However, the Poisson sum formula is still pos-
sible to use.
The Fourier transform in x and y can be

applied so that (2.1) becomes

S ~w = ~pe �
1X

n=�1

Fne
i�nl (2.22)

where ~pe = p̂e exp(i�x0 + i�y0) for a point
force located at (x0; y0). Applying the Fourier
transform to (2.4) yields

G �wn = Fn (2.23)

where

�wn(�) =

1Z
�1

w(nl; y)ei�ydy

is the Fourier transform in the y-direction
(2.10). However, it can also by de�nition be
written

�wn(�) =
1

2�

1Z
�1

~w(��; �)e�i�
�nld��; (2.24)

where �� is used in order to distinguish the
new integration variable from the old (thus,
it does not mean a complex conjugate in this
case). The force array becomes, by using
(2.23)

1X
n=�1

Fne
i�nl = G

1X
n=�1

�w(nl; �)ei�nl: (2.25)

By also making use of (2.24)

1X
n=�1

Fne
i�nl (2.26)

=
G

2�

1X
n=�1

1Z
�1

~w(��; �)e�i�
�nld��ei�nl:

The Poisson sum formula is now to be used.
Thus, using the result (2.21), and then inter-
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More about periodicity 2.3 Evseev's approach

changing the order of summation and inte-
gration in (2.26) yields

1X
n=�1

Fne
i�nl (2.27)

= G

1Z
�1

~w(��; �)
1X

n=�1

Æ((����)l�2�n)d��

=
G

l

1X
n=�1

~w(�� 2n�=l; �):

The transformed displacement can be solved
for, using (2.22) and (2.27)

~w(�) =
~pe(�)

S(�)
� G

lS(�)

1X
n=�1

~w(�� 2n�=l):

(2.28)
However, a ~w term is still present in the right
hand side of equation (2.28). Substitute �!
� � 2m�=l and sum over all m, making use
of the fact that

1X
n=�1

~w(��2n�=l�2m�=l) =
1X

n=�1

~w(��2n�=l);

for integer m, then yields

1X
m=�1

~w(�� 2m�=l)=
1X

m=�1

~pe(��2m�=l)

S(��2m�=l)

�
1X

m=�1

G

lS(��2m�=l)

1X
n=�1

~w(��2n�=l);

or after some rearrangements

1X
m=�1

~w(�� 2m�=l) = P (�)l
Æ
(l +GT0(�)) ;

(2.29)

where the following notations have been in-
troduced

T0(�) =
1X

m=�1

1

S(��2m�=l)
; (2.30)

P (�) =
1X

m=�1

~pe(��2m�=l)

S(��2m�=l)
: (2.31)

The transformed displacement is then found
to be

~w(�) =
~pe(�)

S(�)
� GP (�)

S(�) (l +GT0(�))
: (2.32)

The displacement w(x) can be found by
means of applying the inverse Fourier trans-
form (2.7). This operation is not trivial to
perform analytically. This is a drawback
of Evseev's approach compared to other ap-
proaches. However, it is not always necessary
to perform this operation, as discussed below
and in chapter 4, due to the fact that the
transformed displacement is the basis for cal-
culating the radiated power. In the appendix
of [3] is a procedure to perform a numerical
integration, based on [54].

Evseev's approach is appropriate when the
exciting pressure is non-periodic, or when
Heckl's formulas for power radiation [30, pp.
526{537] are to be used (repeated in chapter
4) or when the far-�eld pressure is to be cal-
culated, as in both the later cases the trans-
formed version of the �eld variables is used
as a start point.
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2.4 Rumerman's approach More about periodicity

2.4 Rumerman's ap-

proach

In Rumerman's approach both the structure
and the excitation is periodic, so Floquet's
principle can be employed. Once again the
problem is described by an inhomogeneous
di�erential equation described in equation
(2.1), and a boundary condition (equal for
all n) described in equation (2.4). In this case
the excitation pressure needs to be periodic,
and more speci�cally of the form

pe = p̂ee
�ikxx

Floquet's principle (2.19) is then valid, which
in the present case takes the form

Fn = F0e
�ikxnl (2.33)

and thus, equation (2.1) can be written

S[w] = p̂ee
�ikxx � F0

1X
n=�1

e�ikxnlÆ (x� nl) ;

implying that only the 0'th boundary condi-
tion has to be used. By use of Fourier trans-
formation this equation becomes

S ~w = 2�p̂eÆ(x� kx)� F0

1X
n=�1

e�ikxnlei�nl

(2.34)
The Poisson sum formula is used to show that

1X
n=�1

e�ikxnlei�nl =
2�

l

1X
n=�1

Æ(�� kx � 2n�=l);

compare with (2.21). Thus, equation (2.34)
can be written

S ~w = 2�p̂eÆ(x� kx)

� F0
2�

l

1X
n=�1

Æ(�� kx � 2n�=l)

which is easily inverse transformed (due to
the Diracs)

w =
p̂e

S(kx)
e�ikxx � F0

l

1X
n=�1

e�i(kx+2n�=l)x

S(kx + 2n�=l)

(2.35)
or

w(x) = w1(x)� F0T (x) (2.36)

where the meaning of the notations can be
identi�ed in (2.35). Two alternative forms of
writing the solution will be presented. The
�rst alternative form is

w(x) = A(x)e�ikxx; (2.37)

where

A(x) =
p̂e

S(kx)
� F0

l

1X
n=�1

e�i2n�x=l

S(kx + 2n�=l)

(2.38)
is l-periodic, compare with equation (2.15).
The second alternative form is

w(x) =
1X

n=�1

Wne
�i(kx+2n�=l)x; (2.39)

where

Wn =
p̂e

S(kx)
Æ0n � F0

l

1

S(kx + 2n�=l)
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More about periodicity 2.5 Nordborg's approach

and where Æ0n is the Kronecker delta. This
form of the solution equals the space har-
monic form used, for example, by Mead and
Pujara [59], see also Mead [60].
The reaction force F0 is now to be deter-

mined from equation (2.5) and (2.36), letting
x! 0

F0 =
G[w1(0)]
1 + G[T (0)]

where G ! G if a exp(�ikyy) dependency is
assumed in the y-direction parallel with the
beams (which is assumed henceforth in this
section).
Free waves are found if w1 ! 0

w(0) = �F0T (0):

By applying the beam operator G and use
equation (2.5)

Gw(0) = �F0GT (0) = F0;

simpli�ed to

1 +GT (0) = 0: (2.40)

Equation 2.40 is the dispersion equation that
has to be solved in order to get the appro-
priate wavenumbers. Every pair (f; ky) then
yields a number of solutions � (or kx).
If the response of a point force is of interest,

equations (2.7) and (2.37) can be combined
as

w(x; y) =
1

4�2

Z Z 1

�1

A(x0)e
�i(kxx+kyy)dkxdky;

(2.41)
where in the present case p̂e = F exp(ikxx0)
(assuming y0 = 0), and thus equation (2.38)

becomes (if also incorporating F0)

A(x0) =
F eikxx0

S(kx)

� GP (kx)

S(kx)(l +GlT (0))

which should be compared with equation
(2.32) in Evseev's approach (where T (0) =
T0=l), and where

P (kx) =
1X

n=�1

Fei(kx�2n�=l)x0

S(kx + 2n�=l)
:

Equation (2.41) is thus identical with the in-
verse transform of equation (2.32) in Evseevs
approach. The integral is examined by Mace
in [54]. In the presence of 
uid loading, nu-
merical integration has to be applied (but the
integrals can be simpli�ed due to the peri-
odicity). If neglecting the 
uid loading, the
numerical integration is simpli�ed.
Rumerman's approach is thus an elegant

way to get the displacement due to a con-
vected harmonic pressure. However, when
the response to a point force is of interest,
then the both approaches yield the same in-
tegral to be solved.

2.5 Nordborg's approach

Nordborg's approach is very similar to
Rumerman's approach; the di�erence is basi-
cally the order in which the operations are ap-
plied. However, Nordborg in his paper is in-
terested in the free wave propagation, which
then is used to form the response of a point
force. This strategy is also used herein.
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2.5 Nordborg's approach More about periodicity

The homogenous version of the governing
equation (2.1) is,

S[w] = �G[w]
1X

n=�1

Æ (x� nl)

where the boundary conditions (2.4) has been
included directly into the equation. The
Fourier transform of this equation is given by

S ~w = �G
1X

n=�1

w(nl)ei�nl

The Floquets principle can be applied then,
in the present case

w(nl) = w(0)e�ln

and thus

~w = �Gw(0)

S

1X
n=�1

e�lnei�nl (2.42)

Inverse transform equation (2.42), formally
written

w(x) = �w(0)
1X

n=�1

e�lnIn(x); (2.43)

In(x) = F�1
x fG=Sg

(where the y-dependency is assumed to be of
the form e�ikyy). The integral In can usually
be evaluated by means of contour integration
and residue calculus, whereafter the sum can
be evaluated to give a closed formulation. If
this is not possible, as the case when 
uid
loading is present, Rumermans approach is
an alternative.

Putting x = 0 in equation (2.43) gives the
dispersion relation to determine the possible
�

1 +
1X

n=�1

e�lnIn(0) = 0 (2.44)

which is identical to equation (2.40), the dif-
ference in the representation of the sum be-
ing exactly the Poisson formula. Every pair
(f; ky) then yields a number of solutions �
(or kx). The di�erential equation (2.1{2.2)
is of order four, and there should therefore
be four solutions to (2.44). These can be de-
noted��a and ��b. The general solution can
be written

w(x) (2.45)

= c+aA(x; �a)e
�ax+c�aA(x;��a)e��ax

+ c+bA(x; �b)e
�bx+c�bA(x;��b)e��bx

where c�a and c�b are constants to be deter-
mined by boundary conditions, and where

A(x; �) =
1X

n=�1

e�lnIn(x) (2.46)

is l-periodic, cf. section 2.2.

When the response of a point force
is wanted, which is the Green's function
G(xjx0) to the problem, Nordborg uses the
free waves to build the �eld. The approach is
suited for the case of a periodic beam (Nord-
borg studied rail vibrations), or the response
of a line force on a plate. Since the solution
must remain �nite as x ! �1, only two
solutions (out of four) are possible on each
side of the force. Thus, inside the �rst bay,
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More about periodicity 2.6 Double plates

0 � x � l, Green's function can be found as

Gr(xjx0) (2.47)

= c�aA(x;��a)e��ax+c�bA(x;��b)e��bx

where G(xjx0) = Gr(xjx0) if the observation
point is to the right of the excitation point,
x0 � x � l, and

Gl(xjx0) (2.48)

= c+aA(x; �a)e
�ax+c+bA(x; �b)e

�bx

and where G(xjx0) = Gl(xjx0) if the obser-
vation point is to the left of the excitation
point, 0 � x � x0. Outside the �rst bay,
0 � x or x � l, Floquet's theorem is to be
used. The four constants c�a and c�b are cho-
sen to match the boundary conditions in the
source region, which are [51]

Gr(x0)�Gl(x0) = 0;

@Gr

@x

����
x=x0

� @Gl

@x

����
x=x0

= 0;

@2Gr

@x2

����
x=x0

� @2Gl

@x2

����
x=x0

= 0;

@3Gr

@x3

����
x=x0

� @3Gl

@x3

����
x=x0

= 1=B0:

Solving this system of four linear equations
yields the four constants. Thus, Green's func-
tion can be determined.
Compared to Rumerman's approach, Nor-

borg's approach have advantages when the
sum involved (2.43) can be evaluated by
means of contour integration and geometric
series. Nordborg's free wave approach to gain
the response of a point force is elegant, and
can be applied to other problems such as

anking transmission.

2.6 Double plates

An approach useful in dealing with
lightweight wall and 
oor structures must be
able to handle a double-plate system. Lin
and Garelik [28], Takahashi [58], Skelton [49]
and Urusovskii [50] have all treated periodi-
cally sti�ened double-plate structures. This
is also the case in [4, 5].
Instead of one plate equation, as in (2.1),

two equations are here present, coupled to
each other through a cavity �eld and through
the beams,

S1[w1] = pe�p(1)c �
1X

n=�1

F (1)
n Æ(x�nl);(2.49)

S2[w2] = p(2)c +
1X

n=�1

F (2)
n Æ(x�nl); (2.50)

where pc is the pressure reaction from the cav-
ity between the plates, and where the suÆx
�(1) and �(2) refer to the �rst and the second
plate respectively. This system of equations
can be written, using matrix notations (ma-
trices being bold-faced)

S[w] = pe � pc �
1X

n=�1

FnÆ(x� nl); (2.51)

and the three approaches previously de-
scribed can be applied (holding in mind the
order of the matrix multiplications).
In the case of a double-plate system, one

set of reaction forces acts on each plate. The
reaction forces are related to each other via
the beam equation

F (1)
n � F (2)

n = Gw(f)
n ; (2.52)
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where �(f) refers to the beam, and via a
boundary condition. A resilient device can
be added here, for example, a ideal spring
between the beam and the second plate,

F (2)
n = K

�
w(f)
n � w(2)

n

�
; (2.53)

where K is the spring constant. This is one
choice of boundary condition. An alternative
is to set the displacement of the beams equal
to the displacement of the both plates, w

(1)
n =

w
(f)
n = w

(2)
n , as is the case in [4, 28].

Extra consideration concerning the cavity
�eld pc must be made. The simplest model of
the cavity is to use a locally reacting spring
(as in [30, pp. 450{462]). A more elaborate
description is to describe the �eld in the cav-
ity as a wave �eld, but neglecting the in
u-
ence of the beams. The description of the
cavity �eld is the same as London [27] used.
This has been the case for all mentioned pa-
pers, except for [5] where also the in
uence of
the beams as walls inside the cavity is taken
into account.

Some comments regarding Urusovskii's pa-
per [50] will here be discussed. Urusovskii
states that, concerning the paper by Lin and
Garelick [28]:

However, the basic equations do not
include the phase factor associated
with the force exerted on the plates
by the beam as a result of oblique
incidence of plane wave on the plate,
nor do they take the mass reactance
of the beams into account. Also,
the acoustical in
uence of medium
between the plates is disregarded

prematurely in the intermediate ex-
pressions, and the �nal equations do
not contain explicit expressions for
the amplitudes of the spatial spec-
trum of di�racted waves, includ-
ing those transmitted through the
plate.

None of these statements is entirely correct.
First of all, it should be noted that Lin and
Garelick use Evseev's approach even though
the excitation is periodic (an incident sound
wave). This means that Floquet's principle
is not needed in the solution, and therefore
is the phase factor associated with the re-
action force not explicitly introduced. The
beams are modelled as locally reacting me-
chanical line impedances. In the numerical
examples, these impedances are speci�ed as
mass reactances. What, however, is not in-
cluded in either [28] nor in [50] is the bend-
ing of the beams, (cf. equations (2.4{2.5)).
Concerning the in
uence of the medium be-
tween the plates and of the di�racted waves;
the reason that Urusovskii in his reading
cannot �nd them is that Evseev's approach
is used, and thus, the equations are solved
in the wavenumber domain where only one
wavenumber is present at the time. How-
ever, the transformed result includes all com-
ponents, and in the last �gure of the numer-
ical section in [28] the e�ect of the scattered
waves, i.e., the components not radiating in
the incidence direction, is examined.
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Chapter 3

Moment reaction and coupling

In the prediction model presented in pa-
pers [4, 5], the beam-sti�eners do not cause
any moment reaction to the plate. In [4] it
is argued that this is the main reason for the
disagreement between measurement and pre-
diction model. Thus, it is important to see in
what degree the moment reaction does a�ect
the result. Moment reaction on periodically
sti�ened plates has been treated, for exam-
ple, by Rumerman [52], Mace [53, 54], and
Takahashi [58].

3.1 A single plate

The moment reaction is introduced as a re-
action pressure pt (t for torsion), in the same
way as the force reactions

pf(x; y) =
1X

n=�1

Fn(y)Æ(x� nl) (3.1)

pt(x; y) =
1X

n=�1

Mn(y)Æ
0(x� nl) (3.2)

where Æ0(x) = @Æ=@x is the derivative of the
Dirac delta function. The governing equation
for a one-plate system is thus equation (2.1)

with an extra reaction pressure pt from the
moment reaction,

S[w] = pe � pf � pt

where the operator S is found in equation
(2.2), being the Kirchho� plate bending op-
erator. Each reaction force and moment are

Fn(y) = Gw(nl; y) (3.3)

Mn(y) = H�(nl; y) (3.4)

where
�(x) = @w=@x

The bending operator for the beam is given
in equation (2.5), and the torsion operator for
the beam is

H�n = T@2�n=@y
2 +�!2�n (3.5)

where �n = �(nl; y), cf. [30].

3.2 Using Rumerman's

approach

In this case the driving pressure needs to be
periodic, and thereby of the form

pe = p̂ee
�ikxx
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3.2 Using Rumerman's approach Moment reaction and coupling

It is now assumed that the exciting pres-
sure is of the form pd = p̂ee

�ikxx $ ~pe =
p̂e2�Æ(� � kx) if omitting the y-dependency,
whereby Floquet's principle is valid. The
pressure caused by the reaction forces is, to-
gether with its Fourier transform,

pf(x; y) = F0(y)
1X

n=�1

e�ikxnlÆ(x�nl)(3.6)

~pf (�; y) = F0(y)
1X

n=�1

e�i(kx��)nl (3.7)

The Fourier transform of Æ0 is

Fx [Æ
0(x� nl)] = �i�ei�nl

and thereby, the pressure caused by the re-
action moments is, together with its Fourier
transform,

pt(x; y) = M0(y)
1X

n=�1

e�ikxnlÆ0 (x� nl)

~pt(�; y) = �i�M0(y)
1X

n=�1

e�i(kx��)nl

The Poisson sum (2.21) is used, which yields

~pf =
2�

l
F0

1X
n=�1

Æ(�� kx � 2n�=l)

~pt = �2�

l
i�M0

1X
n=�1

Æ(�� kx � 2n�=l)

where ~pf = ~pf(�; x) et cetera. The trans-
formed solution is then found as

~w = ~pe=S � ~pf=S � ~pt=S

and the displacement, applying the inverse
Fourier transform (2.9), and the solution can
be written

w(x) = w1(x)�F0T
(0)(x)�M0T

(1)(x) (3.8)

where the following notation has been intro-
duced:

T (1)(x) = � i

l

1X
n=�1

(kx + 2n�=l) e�i(kx+2n�=l)x

S(kx + 2n�=l)

and T (0)(x) is the same as T (x) in equations
(2.35{2.36). One may observe that T (1)(x)
simply is the �rst derivative of T (0)(x). The
rotation � is found by means of derivation of
equation (3.8), which yields

�(x) = �1(x)�F0T
(1)(x)�M0T

(2)(x) (3.9)

where

�1(x) = �ikxw1(x) = �ikxp̂e e
�ikxx

S(kx)

and

T (2)(x) = �1

l

1X
n=�1

(kx+2n�=l)
2e�i(kx+2n�=l)x

S(kx + 2n�=l)

is the derivative of T (1)(x) and the second
derivative of T (0)(x). Applying the boundary
conditions (3.3{3.4) to equations (3.8) and
(3.9) yields, if also assuming a y�dependency
of the form exp(�ikyy) so that G ! G and
H ! H ,

Gw1(0)� F0GT
(0)
0 �M0GT

(1)
0 = F0

and

H�1(0)� F0HT
(1)
0 �M0HT

(2)
0 = M0:
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Thus, the system of equations can be ex-
pressed in terms of matrixes,"

1 +GT
(0)
0 GT

(1)
0

HT
(1)
0 1 +HT

(2)
0

#�
F0

M0

�

=

�
Gw1(0)
H�1(0)

�
; (3.10)

from which the force F0 and the moment M0

is determined. The dispersion relation for
free waves is found when the determinant of
the matrix in (3.10) is put to zero.

3.3 Double plates

In the case of a double-plate system one set
of reaction forces and one set of reaction mo-
ments act on each plate. Takahashi [58], deal-
ing with double plate systems connected both
with point connector and beam in two or-
thogonal directions, included the moment re-
action for both the point connectors and the
beams.
As described in section 2.6, the governing

equation for the double-plate system can be
described in term of systems of equations, in
this case

S[w] = pe � pc � pf � pt; (3.11)

where the three approaches in chapter 2 can
be applied.
The reaction forces are related through the

beam equation as in equation (2.52). As in
section 3.1, what is added in the case of mo-
ment coupling is the torsion equation (3.5),
in this case

M (1)
n �M (2)

n = H�(f)n ; (3.12)

A resilient device can be added here, e.g., a
ideal spring between the beam and the second
plate, as in equation (2.53), and/or an ideal
rotational spring between the beam and the
second plate,

M (2)
n = C

�
�(f)n � �(2)n

�
; (3.13)

where C is the rotational spring constant. As
an alternative, the boundary condition can
be rigid; that is equal displacement w

(1)
n =

w
(f)
n = w

(2)
n and rotation �

(1)
n = �

(f)
n = �

(2)
n is

used instead.
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Chapter 4

Power and sound radiation

In many situations of sound radiation, the
sound pressure in the radiated �eld is not a
good measure of the radiation; it is a �eld
variable and has therefore to be integrated
to yield a single real number that one could
compare with other situations. Energy mea-
sures as radiated power and sound intensity
are better alternatives. One example is the
transmission coeÆcient � (and transmission
loss R dB). The transmission coeÆcient is de-
�ned as

� = �t=�i (4.1)

where �t is the transmitted power and �i is
the incident power. Also, the impact noise
level can be determined from the power radi-
ating from the structure that is excited by an
ISO tapping machine, as is used in [4].

In the present chapter, power radiation is
considered and discussed in connection to the
papers in this thesis. The purpose of the
chapter is to give an overview of the avail-
able theory. However, the chapter has no in-
tention to give a complete survey; the list of
reference is (unfortunate) incomplete. It will
be shown that the Cremer and Heckl formula
for radiated power can be derived in di�erent

ways.

4.1 Radiated power from

wavenumber domain

Cremer and Heckl [30, pp. 526{534] present
a very useful formula to calculate the power
radiating from a structure. The formula uses
the transformed velocity (or, in our case, the
transformed displacement). As the trans-
formed �eld variable is used, the inverse
transform is not required in the solution.
The Fourier transform pair for the in�nite

case is found in equations (2.7{2.8). In order
to also include the �nite case, the transform
(2.7) can also be written

~w(k) =

Z



w(r)eik�rdr (4.2)

where k = (�; �), r = (x; y) and k � r =
�x + �y. The integration domain 
 can be
both the in�nite domain and the �nite (rect-
angular) domain. The inverse transform (2.8)
is with the same notations

w(r)=
1

4�2

Z 1

�1

~w(k)e�ik�rdk: (4.3)
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4.1 Radiated power from wavenumber domain Power and sound radiation

The boundary condition connecting the
acoustic pressure �eld to the plate displace-
ment is

@p

@z

����
z=0

= !2�w (4.4)

Assuming outgoing waves / e�
z { with
propagation constant 
 =

p
�2 + �2 � k2 in

the z-direction { the transformed pressure is
then related to the transformed displacement
according to

~p(k) = �!2� ~w(k)=
(k) (4.5)

Using equations (4.3) and (4.5), the total
sound-pressure is thus given by

p(r; z) =
�1
4�2

(4.6)

�
Z 1

�1

!2� ~w(k)


(k)
e�
(k)ze�ik�rdk:

The radiated power can be de�ned as

�rad =
1

2
<
�Z




p(r; 0)v�(r)dr

�
(4.7)

where v = i!w is the velocity and �� is the
complex conjugate. Inserting equation (4.6)
in (4.7) yields

�rad =
1

8�2

� <
�Z




Z 1

�1

i!3� ~w(k)


(k)
w�(r)e�ik�rdkdr

�

or if (4.3) also is used for w�(r)

�rad =
!3�

32�4
<
(

(4.8)

i

Z



Z 1

�1

Z 1

�1

~w(k) ~w�(k0)


(k)
eik

0�re�ik�rdk0dkdr

)
:

One may evaluate this integral by observing
that substitution of equation (4.3) in (4.2):

~w(k) =
1

4�2

Z



Z 1

�1

~w(k0)e�ik
0�reik�rdk0dr:

(4.9)
With some rearrangements of the order of in-
tegration and identi�cation of the result in
(4.9), the radiated power can be written

�rad =
!3�

8�2
<
(
i

Z 1

�1

~w(k) ~w�(k)


(k)
dk

)
;

(4.10)
or if real value operator < is applied and the
integrals are written out

�rad =
!3�

8�2

Z Z
�2+�2�k2

j ~w(k)j2p
k2 � �2 � �2

d�d�:

(4.11)
Make use of the substitution � = k cos', � =
k sin' (so that dk = d�d� = krdkrd'),

�rad =
!3�

8�2

Z 2�

0

Z k

0

j ~w(k)j2p
k2 � k2r

krdkrd':

(4.12)
One more substitution can be made; kr =
k cos �, where k = !=c is constant and the
angle � is the parameter. Thus, dkr =
�k sin �d� and equation (4.12) is written

�rad =
�!3�k

8�2

Z 2�

0

Z 0

��=2

j ~w(k)j2 cos �d�d':
(4.13)

which equals equation (4.30) if the substitu-
tion �0 = �=2 + � is employed.
In order to see the di�erence between radi-

ation from �nite and in�nite structures, the
following notations for the �nite transform
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(where it is assumed that the region 
 is rect-
angular with edge length 2a and 2b respec-
tively) can be used

~wf(k) =

Z



w(r)eik�rdr

and the following notations for the in�nite
transform

~wi(k) =

1Z
�1

w(r)eik�rdr:

With the aid of the inverse transform, the
�nite transform can be expressed in terms of
the in�nite version,

~wf(k) =
1

4�2

Z



1Z
�1

~wi(k0)ei(k�k
0)�rdk0dr

(4.14)
The Fourier relation

ei(k�k
0)�r=

Z 1

�1

Æ(s���)Æ(t���)ei(xs+yt)dsdt

can be used, where �� = � � �0 and �� =
� � � 0, insert in (4.14) and interchange the
order of integration so that r = (x; y) is inte-
grated under the integration sign. Make use
of the integralZ




ei(xs+yt)dxdy = 4 ab sinc(as) sinc(bt);

(4.15)
where sinc(s) = sin(s)=s, so that (4.14) can
be written, if the Dirac function is taken into
account

~wf(k) =
ab

�2

1Z
�1

~wi(k0)sinc(a��)sinc(b��)dk0:

(4.16)

Using the limes representation of the Dirac
delta function

Æ(x) = lim
a!1

sin(ax)=�x = lim
a!1

a

�
sinc(ax);

it can be seen that ~wf(k) = ~wi(k) in the limit
where a; b!1, as it should.

4.2 Radiated power from

Green's function

The Helmholtz integral equation can be writ-
ten (see, for example, [67, pp. 79{84])

p(r) = �"
Z

0

�
p
@G

@n0
� !2�Gw

�
dr0:

(4.17)
where " = 1 if r is inside the volume of inte-
gration, " = 2 if r is on the boundary of the
volume of integration, and " = 0 elsewhere.
When every point in 
0 is located in the same
plane, as is the case for a plane surface vibra-
tion an a wall, the Helmholtz integral equa-
tion is reduced to Rayleigh's integral,

p(r) = !2�"

Z

0

G(rjr0)w(r0)dr0: (4.18)

The radiated power, given by equation (4.7),
becomes (if radiation to only one side of the
structure is considered)

�rad =
�!
2
<
�
i

Z



p(r)w�(r)dr

�
(4.19)

=
�!3�

2
<
�
i

Z



Z

0

G(rjr0)w(r0)w�(r)dr0dr
�
:

It should here be noted two double integrals
is used to calculate the power, and if the dis-
placement is given in transform space even
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one more double integration is needed (the
inverse transform). If equation (4.12) were
used instead, only one double integration has
to be employed. Green's function is [67])

G(rjr0) = �e�ikr

4�r

where

r =
p
(x� x0)2 + (y � y0)2:

If the displacements w(r0) and w�(r) are ex-
pressed in their Fourier transforms, as in sec-
tion 4.1, the integrals in equation (4.19) can
be writtenZ




Z

0

G(rjr0)w(r0)w�(r)dr0dr (4.20)

=
1

8�4

1Z
�1

1Z
�1

~w(k) ~w�(k0)IG(k;k
0)dk0dk

where

IG(k;k
0) �

Z



Z

0

G(rjr0)eik0�r�ik�r0dr0dr:

(4.21)
This type of integral can be simpli�ed follow-
ing the procedure, for example, in Thomas-
son [68]. The idea is to express the Green's
function by its Fourier transform and then
integrate in r and r0 under the integral sign.
Thus, the Fourier transform of Green's func-
tion must be found. The following Hankel
transform can be found in mathematics ta-
bles (e.g. [69]),

G = �e�ikr

4�r
= �

Z 1

0

�J0(�r)

2�
p
�2 � k2

d�: (4.22)

Expressing the Bessel function in one of its
integral representations [69]

J0(�r) =
1

2�

Z �

��

ei�r sin'd'

and inserting it in (4.22), yields

G =
�1
8�2

�Z
��

1Z
0

�ei�r sin'p
�2 � k2

d�d': (4.23)

Finally, with the suitable substitution �00 =
� cos' and � 00 = � sin' Green's function can
be written

G(rjr0) = �1
8�2

1Z
�1

eik
00�(r�r0)p

�002 + � 002 � k2
dk00:

(4.24)
The integral (4.21) can thus be written, if
interchanging the order of integration,

IG(k;k
0) =

�1
8�2

1Z
�1

1p
�002 + � 002 � k2

�
Z



Z

0

eik
00�(r�r0)eik

0�r�ik�r0dr0dr dk
00: (4.25)

The two inner integrals can be evaluated us-
ing equation (4.15). The result in (4.16), that
is the transformation from an in�nite to an
�nite Fourier transform, can then be identi-
�ed if inserting IG(k;k

0) in equation (4.20)
and once again interchanging the order of in-
tegration. Thus, the radiated power is

�rad = (4.26)

=
!3�

8�2
<
(Z 1

�1

j ~wf(k00)j2 dk00p
k2 � �002 � � 002

)

which equals the result in section 4.1, equa-
tion (4.10).
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4.3 Radiated power from

the far-�eld pressure

A far-�eld approximation of the pressure
�eld was used by Mace [17] and Takahashi
[58]. It is derived by means of a stationary
phase asymptotic approximation in Junger
and Feith [67]. The method determines the
wavenumber that a�ects the result the most,
which then is used in the solution. The result
reads

p(r; �; ') = ��!2 ~w(�0; �0)
e�ikr

2�r
(4.27)

where �0 = k sin � cos', �0 = k sin � sin'
and k = !=c. In order to compare with the
other results, the radiated power is calculated
also in this case. In the spherical type of wave
in (4.27) the intensity is

I = jpj2=�c

in the wave direction, and therefore

�rad =

Z
hemisphere

IdS =
1

�c

Z
hemisphere

jpj2dS (4.28)

Using the fact that for a sphere of radius R
the area element is dS = R2 sin �d�d',

�rad =
1

�c

Z 2�

0

Z �=2

0

jpj2R2 sin �d�d' (4.29)

Taking the absolute value of equation (4.27)
yields

jp(R; �; ')j = �!2

2�R
j ~w(�0; �0)j;

and thus equation (4.29) can be written

�rad =
�!4

c4�2

Z 2�

0

Z �=2

0

j ~w(�0; �0)j2 sin �d�d'
(4.30)

The dependency of the radii R herewith dis-
perses. Equation (4.30) is equal to equation
(4.13) derived from the Cremer and Heckl ra-
diation formula. This derivation of the radi-
ation formula was used by Takahashi in [58]
and the present author in [70, 71].

4.4 Sound radiation of an

in�nite structure

An in�nite structure will, if the wave�eld is
travelling (non-decaying), radiate an in�nite
amount of power. It is therefore not appro-
priate to use the power as a measure. Instead
the sound intensity is used. It should there-
fore be noted that the following discussion is
only valid for in�nite (periodic) structures.
When a structure is periodic in space and

force, Floquet's principle applies and both
displacement and pressure �eld can be de-
scribed in terms of space harmonics (peri-
odicity in x). Thus, for the displacement a
space harmonic series as in equation (2.39)
can be assumed. The radiated pressure will
be of the same form (as it is caused by the
periodic structure),

p(x; y) =
1X

n=�1

Pne
�i(kx+2n�=l)x�ikyy��zz:

(4.31)
Thus, the radiated �eld will be built up by
plane waves in discrete angles, in contrast to
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an in�nite homogenous structure where only
one angle (the incident) is represented, or to
a �nite structure where the angle distribution
is continuous.
The cases considered herein are driven by

a convected pressure, that, for example, can
be an incident pressure wave. The incident
wave is generally described by two angles, �
and ', together with the wavenumber in the

uid k = !=c,

kx = k sin � cos';

ky = k sin � sin'; (4.32)

kz = k cos �:

The angles fall in the regions

0 � � < 2�

and

0 � ' < �=2:

The angle-dependent transmission eÆ-
ciency can in the in�nite periodic case be de-
�ned as

�(�; ') � It � n
Ii � n =

In;t(�; ')

In;i(�; ')
(4.33)

where index n stands for normal direction, It
and Ii is the intensity vector for the transmit-
ted and incident �eld respectively, and n is
the unit vector normal to the plate. Thus, in
the de�nition of the angle-dependent trans-
mission eÆciency only power 
ow through
the structure is accounted for. For a simple
homogenous and in�nite structure this angle
dependency is not a problem as the radiated
wave has the same direction as the incident

wave, and therefore (suppressing the azimuth
angle)

�(�) =
It(�) cos �

Ii(�) cos �
=

It(�)

Ii(�)
:

However, this is not generally the case, and
the de�nition (4.33) is preferred.
The statistical transmission eÆciency is

then found by means of considering the mean
intensity (both incident and transmitted),
the mean taken as a arithmetic mean over all
solid angles of incidence of a halfsphere. The
following de�nitions is thus introduced: For
the incident wave �eld, the mean intensity is

Ii;s = hIi;n(�; ')i = Ii hcos �i ; (4.34)

where the brackets h�i denote the mean taken
over the incident angles, and where the last
equality is due to the di�use �eld de�nition,
where all directions have the same intensity
and probability. For the transmitted wave
�eld, the mean intensity is

It;s = hIt;n(�; ')i = Ii h�(�; ') cos �(�; ')i ;
(4.35)

where the last equality is due to equation
(4.33).
The average over all solid angles of inci-

dence of a halfsphere, is

hIn(�; ')i =
Z

hemisphere

In(�; ')d


, Z
hemisphere

d
 :

(4.36)
The in�nitial solid angle is found to be

d
 = sin � d� d';
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so the integrals become

Z
hemisphere

In(�; ')d
 =

2�Z
0

�=2Z
0

In(�; ') sin � d� d'

(4.37)
and

2�Z
0

�=2Z
0

sin � d� d' = 2�:

The statistical transmission eÆciency is then
found to be

�s � It;s
Ii;s

=
h�(�; ') cos �i

hcos �i (4.38)

which, if using (4.36{4.37) becomes

�s =

2�R
0

�=2R
0

�(�; ') cos � sin � d� d'

2�R
0

�=2R
0

cos � sin � d� d'

: (4.39)

Evaluating the integral in the denominator
results in

�s =
1

�

2�Z
0

�=2Z
0

�(�; ') sin � cos � d� d' (4.40)

or when no azimuth angle ' dependency is
present

�s = 2

�=2Z
0

�(�) sin � cos � d� (4.41)

which is found in many textbooks, for exam-
ple, [66, pp. 369].
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Chapter 5

Which are the important parameters?

In order to �nd out which of the parame-
ters of a lightweight 
oor are important and
how to change them in order to achieve bet-
ter results, the prediction model in [4] (and
the simple mass-resistance excitation model
in [3]) is used in a parameter study. It should
therefore be noted that the parameter study
only applies for the type of 
oor structure
included there; i.e., a structure consisting of
two plates rigidly connected to the reinforc-
ing beams (w1(nl) = wf = w2(nl)). The 
oor
structure can be seen in Figure 5.1. Thus, the
results found here cannot necessarily be ap-
plied to another type of 
oor structure, such
as a 
oor with resilient channels. The vari-
ations are based on a original set of input
data (in what is called the base 
oor). One
(or sometimes two) parameter is varied at the
time. The variation is performed with a fac-
tor taking the values f0:25 0:5 1 2 4g applied
to the varied parameter, keeping the rest of
the parameters constant. The result is pre-
sented as the increase in impact sound level
compared to the base 
oor.

�Ln = Ln � Lnj0
where the notation �j0 henceforth denotes the

�
 �


Figure 5.1: A sketch of the base 
oor structure.
Case a) without mineral wool, case b) with min-
eral wool.

base 
oor and the original set of data. In the
�gures this variation will be represented by
�ve curves of �Ln (including the zero line).
The curves are denoted, in order of increasing
factor: Æ; �; then the zero line without any
marker, then � and 5.
A sketch of the 
oor structure can be seen

in Figure 5.1 (the same �gure is also used in
[4]), and the results for the calculations of
the base 
oor are shown in Figure 5.2, where
the case without mineral wool in the cavity
is denoted ({Æ{), and the case with mineral
wool of a depth of half the cavity depth is
denoted ({�{). The base 
oor without min-
eral wool is used except where the opposite is
noted. Some of the variations will just change
the positions of the peaks and dips, but other
variations will cause a broad band increase or
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Figure 5.2: Impact noise level of the base 
oors,
case a) without mineral wool (-Æ-), case b) with
mineral wool (-�-).

decrease of the impact sound level.

The material and geometrical data of the
original con�guration are: `plate' modulus for
the wood in the plates E=(1 � �2) = 6 � 109
N/m2, thickness of the (solid wood) plates
22 � 10�3 m, yielding B0

1 = B0
2 = EI 0=(1 �

�2) = 5:32 � 103. The masses per unit area
of the plates are m00

1 = m00
2 = 10 kg/m2. The

beams have Young's modulus Ef = 11 � 109
N/m2 and density �f = 455 kg/m3 and cross
section 67� 220 mm, giving an area of Af =
14:7 � 10�3 m2 and a moment of inertia of
If = 5:95 � 10�5 m4. The material damping
for wood is � = 0:03, added to the Young's
modulus in the plates and beams. The depth
of the cavity d = 220 � 10�3 m is the same as
the height of the beams. When mineral wool
is present, the 
ow resistivity is R = 11770
Ns/m4. The density of the air is � = 1:29
kg/m3 and the speed of sound in air is c = 340
m/s. Material damping for the air is taken to
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Figure 5.3: Increase in impact noise level when
varying the weight of the �rst plate. The weight
is varied as m00

1 = f0:25 0:5 1 2 4g�m00
1j0, with the

line order Æ; �; the zero line without marker, �
and 5.

be �air = 10�8, added to the speed of sound.
Only one excitation position is used: x0 =
0:43 m.

First, the weight of the plates is varied.
Thus, in Figure 5.3m00

1 is varied, in Figure 5.4
m00

2 is varied, and in Figure 5.5 both of them
are varied. It can be seen that increasing the
weight of the second plate decreases the im-
pact sound more than the increase for the
�rst plate. It should be remembered here that
changes in the �rst plate a�ect both the sys-
tem (that is the wave transmission through
the 
oor structure) and the excitation force
as the excitation model in [3] is used.

The sti�nesses of the plates are then var-
ied. In Figure 5.6 B0

1 is varied, in Figure 5.7
B0

2 is varied, and in Figure 5.8 the sti�ness
of both of the plates is varied together. In
this case, a decrease the sti�ness of the �rst
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Figure 5.4: Increase in impact noise level when
varying the weight of the second plate. The
weight is varied as m00

2 = f0:25 0:5 1 2 4g �m00
2j0,

with the line order Æ; �; the zero line without
marker, � and 5.

plate is advantageous. The reason for this is
that a softer excitation point will in
uence
the excitation force in a favourable manner,
extending the contact time.

The in
uence of the beams is then anal-
ysed. In Figure 5.9 the in
uence of the sti�-
ness of the beams is analysed, and in Figure
5.10 the in
uence of the weight of the beams
is analysed. No big changes can be seen, but
at lower frequencies (below 250 Hz) positive
e�ects can be gained. The beams should be
weaker and heavier in order to decrease the
impact sound in this frequency range.

The in
uence of mineral wool was also
studied. In Figure 5.11 the 
ow resistance of
the mineral wool is varied (the case b in Fig-
ures 5.1 and 5.2), and in Figure 5.12 the frac-
tion of mineral wool occupying the cavity is
varied (that is dmin = f0 0:25 0:5 0:75 1g � d).
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Figure 5.5: Increase in impact noise level when
varying the weight of the �rst and second plate.
The weight is varied as m00

1 = f0:25 0:5 1 2 4g �
m00

1j0 and m00
2 = f0:25 0:5 1 2 4g �m00

2j0, with the
line order Æ; �; the zero line without marker, �
and 5.

43



Which are the important parameters?

63 125 250 500 1k 2k 4k
−20

−15

−10

−5

0

5

10

Third octave band center frequency f [Hz]

In
cr

ea
se

 in
 in

pa
ct

 n
oi

se
 ∆

 L
n [d

B
]

Figure 5.6: Increase in impact noise level when
varying the sti�ness of the �rst plate. The sti�-
ness is varied as B01 = f0:25 0:5 1 2 4g � B01j0,
with the line order Æ; �; the zero line without
marker, � and 5.
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Figure 5.7: Increase in impact noise level when
varying the sti�ness of the second plate. The
sti�ness is varied as B02 = f0:25 0:5 1 2 4g �B02j0,
with the line order Æ; �; the zero line without
marker, � and 5.
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Figure 5.8: Increase in impact noise level when
varying the sti�ness of the �rst and second plate.
The sti�ness is varied as B01 = f0:25 0:5 1 2 4g �
B01j0 and B02 = f0:25 0:5 1 2 4g � B02j0, with the
line order Æ; �; the zero line without marker, �
and 5.
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Figure 5.9: Increase in impact noise level when
varying the sti�ness of the beams. The sti�ness
is varied as Ef = f0:25 0:5 1 2 4g�Ef j0 , with the
line order Æ; �; the zero line without marker, �
and 5.
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Figure 5.10: Increase in impact noise level when
varying the weight of the beams. The weight is
varied as �f = f0:25 0:5 1 2 4g � �f j0 , with the
line order Æ; �; the zero line without marker, �
and 5.

Changing the 
ow resistance does not a�ect
the result much, but the result is clear. The
result of the variation can especially be no-
ticed in the frequency region 100{316 Hz, and
increasing the 
ow resistance decreases the
impact noise in this region. However, this
result is probably in part due to the limita-
tion of the description of the mineral wool in
the prediction model. The mineral wool is
described by a version of the Delaney and
Bazely model [18], in which the structural
phase of the medium is included only as sec-
ond order e�ects, as the empirical model only
has a 
uid phase. However, with increas-
ing 
ow resistance the structural phase will
eventually be increasingly important, imply-
ing that in reality there should be an optimal
value for the 
ow resistance. This was noted
in Figure 1.1, where mineral wool with den-

sity 26 kg/m3 is better than wool with den-
sity 15 kg/m3 and 35 kg/m3 (assuming a sim-
ple one-to-one relationship between density
and 
ow resistance). In order to improve the
model, the mineral wool should be modelled
as a Biot material [19, 20], that includes both
structural and 
uid phases. In the case of
varying the fraction of mineral wool, Figure
5.12, it can �rst of all be said that it makes a
big di�erence whether mineral wool is present
or not. When mineral wool is present, in-
creasing the fraction will not make any major
di�erence, but in the frequency region 100{
316 Hz it can be seen that increasing the frac-
tion decreases the impact noise. This result
can be compared with the result presented
in Figure 1.2, where the fraction of mineral
wool also is varied, experimentally but for a
wall with separated studs. There is a decrease
gained in the entire frequency range when in-
creasing the fraction. The di�erence between
the two cases is probably that the structural
connection is more predominant in the nu-
merical example in Figure 5.12.
The periodic distance between the beams

is varied in Figure 5.13. The in
uence seen
is mainly due to frequency shifts of the peaks
and dips. However, at low frequencies, be-
low 125 Hz, the results indicate that increas-
ing the periodic distance increases the impact
noise level. The main reason for this is proba-
bly the decrease in weight associated with the
increase of periodic distance. The tendency
in these results is con�rmed by measurements
found in [72] (also reported and discussed in
[73]), where the spacing is changed from 400
mm to 600 mm in a 
oor structure similar
to the one studied herein. For low frequen-
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Figure 5.11: Increase in impact noise level when
varying the 
ow resistance of the mineral wool.
The case b) in Figures 5.1 and 5.2 is used as
base 
oor. The 
ow resistance is varied as R =
f0:25 0:5 1 2 4g � Rj0 , with the line order Æ; �;
the zero line without marker, � and 5.
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Figure 5.12: Increase in impact noise level
when varying the fraction of mineral wool in
the cavity. The fraction is varied as dmin =
f0 0:25 0:5 0:75 1g � d , where the line order
starts with the zero line, and then Æ; �, � and
5.
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Figure 5.13: Increase in impact noise level when
varying the distance between the beams. The
distance is varied as L = f0:25 0:5 1 2 4g � Lj0
, with the line order Æ; �; the zero line without
marker, � and 5.

cies, the 
oor with a 400 mm spacing had
lower impact noise level than the 
oor with
600 mm spacing. However, for other frequen-
cies the results shift. In connection with this,
it may be interesting to note that for another

oor structure studied in [73, pp. 40{43], a

oor structure with a resilient channel, a clear
trend could be seen in the measurement; the

oor with 400 mm spacing had lower impact
noise level than the 
oor with 600 mm spac-
ing in the entire frequency range.

In Figures 5.14 and 5.15 is the variation
of the construction depth studied. Both the
depth of the cavity and the beams are varied.
In Figure 5.14 no mineral wool is included in
the cavity (case a in Figures 5.1 and 5.2),
whereas in Figure 5.15 mineral wool is in-
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Figure 5.14: Increase in impact noise level when
varying the depth of the construction, including
both cavity and beams. The depth is varied as
d = f0:25 0:5 1 2 4g � dj0 , with the line order
Æ; �; the zero line without marker, � and 5.

cluded in the cavity (case b). In this case
it makes a major di�erence if mineral wool is
present or not; without mineral wool, increas-
ing the construction depth do decrease the
impact noise, but if mineral wool is present
the decrees can be up to 10{15 dB larger than
if mineral wool is not present. The di�erence
is more predominant for higher frequencies
than for lower frequencies.

In summary, it can be said that the largest
positive e�ects (that is, decreasing the im-
pact sound level) are gained by: increasing
the construction depth (when mineral wool
is present), increasing the mass of the sec-
ond plate (without changing the sti�ness,
which can be achieved if adding an extra plate
loosely to the �rst one), or for low frequen-
cies increasing the mass and decreasing the
sti�ness of the beams. Other variations also
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Figure 5.15: Increase in impact noise level when
varying the depth of the construction, includ-
ing both cavity and beams. The cavity con-
tains mineral wool of a hight of 11 cm, case b)
in Figures 5.1 and 5.2. The depth is varied as
d = f0:25 0:5 1 2 4g � dj0 , with the line order
Æ; �; the zero line without marker, � and 5.
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have a large in
uence in a limited frequency
range, but this in
uence is mainly due to fre-
quency shifts of the peaks and dips in the
impact noise frequency curve.
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Chapter 6

Summary and concluding remarks of

the thesis

In chapter 1 di�erent aspects typical for
a lightweight building system were consid-
ered and discussed, so that the acoustics of
such constructions can be understood. It
was there concluded that it is not enough to
simply take account of results obtained for
heavy and homogenous constructions and ap-
ply them to lightweight structures. Nor does
it seem possible to gain insight using SEA
and similar approaches. A more detailed and
elaborate approach is required. The approach
has to be able to involve an elaborate descrip-
tion of the material and components com-
prising such constructions. Moreover, an in-
clusion of conjunctions between various com-
ponents allowing the system-phenomena that
are typical of lightweight constructions to be
adequately described, should be possible.

Periodicity and the phenomena that this
causes (which are typical system-phenomena)
are important characteristics of lightweight
structures. The periodicity is exploited in
chapter 2 and in [1]. A literature survey over
theoretical approaches that can be used for
point excited periodic structures is presented

in [1]. The �ndings are that an approach us-
ing the spatial Fourier transform can handle
point forces, radiation and periodicity, and is
thus suited in the present situation. The spa-
tial Fourier transform approach is therefore
frequently employed in this thesis, with the
aid of Floquet's principle and Poisson's sum.
It can be concluded that the approach is a
successful one, as seen in the papers [4, 5]; the
predicted response/transmission loss have a
reasonable agreement compared with mea-
surements, and the troughs and peaks cor-
respond well with those being found in the
experimental curve.

Due to di�erent variabilities in real con-
structions, the situation is actually nearly {
rather than perfectly { periodic. The e�ects
of small irregularities in a nearly periodic spa-
tially excited structure have been studied in
[6]. A novel statistical approach was used,
suited for sound insulation problems. The
irregularities cause extra damping and sti�-
ness in the mean vibration �eld if material
damping is present. A conclusion addressed
to shipyards and the building industry is that
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it may be a good idea to maintain and in-
crease the amount of irregularities and imper-
fections in built up structures such as walls
and 
oors.
In order to predict sound transmission of

lightweight structures, excitation has to be
dealt with properly. In the case of air-borne
sound insulation the exitation is caused by
a di�use �eld, represented by incoming (and
re
ected) plane waves. The only di�erence
compared to an in�nite homogeneous slab is
that there is a �nite number of radiating com-
ponents. However, in the case of impact noise
insulation the excitation is achieved by means
of the ISO tapping machine, the situation is
more complicated as the source interacts with
the system involved [3]. It was there found
that the force spectrum produced by the tap-
ping machine when acting on a heavy and ho-
mogeneous 
oor structure can not be applied
to a lightweight structure { the excitation is
not invariant with respect to the system. At
low frequencies there is a spread in the force
spectrum of 6 dB, depending on whether the
hammer leaves the excited structure or not.
In order to adequately describe what occurs,
the global and the local driving-point mobil-
ity have to be combined. The results indicate
that it is important to use an accurate and de-
tailed system description in order to predict
the impact force spectrum appropriate.
When assessing the force spectrum, the

point mobility of the structure must be
known. The local e�ects of the point mo-
bility are due to the deformation near the
excitation point, as studied in [2]. A vari-
ational technique was used to determine the
pressure distribution under the indenter (and

thereby also the mobility) when a rigid inden-
ter acts on a plate of �nite thickness. The
functional that was used in the variational
formulation was identi�ed as the complex in-
put power. Two types of pressure distribu-
tions were analysed, a distribution with one
constant, and a distribution with two con-
stants, the latter yielding an improved solu-
tion compared to the solutions found in the
literature.
Radiation and response were discussed in

chapter 4, and also to some extent in [4, 5, 6].
The power radiated from a structure can be
calculated in the wavenumber domain using
the formula of Cremer and Heckl. This for-
mula was derived in di�erent ways in chapter
4.
The cavity between the plates in a dou-

ble construction is of importance to achieve
a reasonable result. In chapter 5 it was found
that increasing the construction depth (when
mineral wool is present) is the most e�ective
way to gain decreased impact noise level. The
cavity �eld was more closely studied in [5]. It
was shown there that at frequencies below the
�rst resonance the two plates have displace-
ments that are out of phase with each other
(if the displacement relative to the beams is
considered). This is due to the reaction �eld
caused by the beam connection. A compari-
son between measured and calculated results
shows satisfactory agreement.
Resilient devices are often present in

lightweight structures. The purpose of these
devises is to provide a loose coupling between
the two plates. The resilient device was stud-
ied experimentally [7] and to some extent the-
oretically [5]. A tensile loaded resilient device
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is often used in lightweight 
oor structures,
mounted in the ceiling (e.g., a resilient chan-
nel). In [7] the frequency dependence of the
transfer and input sti�ness of such devices
is investigated experimentally, using a test
rig consisting of two known masses. Internal
resonances were found for higher frequencies,
which a�ect the performance of the device in
the lightweight structure.
Finally, some important numerical results

can be found in chapter 5, where a parameter
study is performed on the basis of the impact
noise prediction model in [4]. It was shown
there (not surprisingly) that the most posi-
tive broad-band e�ects (i.e., decreasing the
impact sound level) are gained when the con-
struction depth is increased { when mineral
wool is present. Alternatively, the mass of
the lower plate can be increased .
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Summary
The paper presents expressions for the point mobility of infinite plates driven by a completely rigid indenter. The
problem is of general interest in connection with the excitation and transmission of structure-borne sound. The indenter
is assumed to be circular, weightless, and stiff compared with the plate. A rigid indenter is assumed to provide a better
approximation of the actual situation than a soft indenter would, e.g when a hammer acts on a wooden plate. A detailed
three-dimensional analysis is performed. Traditionally, the problem is solved in approximate terms by assuming a
pressure distribution at the interface between the indenter and the plate. In the present study, a pressure distribution
is also assumed, an optimal choice of the pressure amplitude being found by means of a variational formulation.
Numerical results are presented and discussed, the discrepancy between the results obtained and the perfectly rigid
indenter being examined.

PACS no. 43.40.Dx

1. Introduction

The aim of the present paper is to derive an expression
for the point mobility of infinite plates driven by a weight-
less, circular and completely rigid indenter. The problem
is of general interest in the generation and transmission of
structure-borne sound. The work reported here has been
prompted, however, by a special need; that of obtaining
an accurate description of the imaginary part of the point
mobility, such as in an impact situation in which a ’spring’
makes the impacting body rebound [1] (the impact be-
ing of the type where the contact area is constant during
the impact). The hypothesis considered is that in the ex-
pressions derived earlier and reported in the literature the
imaginary part of the mobility is not entirely correct. The
findings in the present paper indicates this hypothesis to
sometimes be correct, such as when the radius of the in-
denter is of the same size or larger than the thickness of
the plate, or in case of high frequencies. It is assumed that
a rigid indenter provides a better description of the actual
situation than a soft indenter does, e.g. when a metal ham-
mer acts on a wooden or a gypsum plate. Use of a rigid
indenter is also more reasonable than use of a soft one
(assuming the pressure distribution to be uniform), as it al-
lows the pressure distribution under the indenter to change
as the frequency increases.

A situation closely connected to the present problem is
that of an indenter acting on a semi-infinite elastic half-
sphere. The static version of this problem was first solved
by Bousinesq [2]. Bycroft [3] solved the dynamic problem
of an rigid indenter by means of assuming the pressure dis-
tribution to be that archived by Bousinesq [2]. This attack
to the problem will soon be discussed. Robertson [4] anal-
ysed the same problem by means of an approximate series
solution. Hryniewicz [5, 6] analysed bodies, especially a
rigid strip, vibrating on a semi-infinite elastic half-sphere

by making use of numerical methods. One conclusion that
can be drawn from his study is that the distribution of the
contact pressure is sensitive to the variation of the fre-
quency. For low frequencies the pressure distribution is
similar to Bousinesq’s results, but not for higher frequen-
cies. Krenk and Schmidt [7, 8] treated a circular indenter
acting on a semi-infinite elastic half-sphere, but they let
the indenter to be elastic. Both vertical and rocking vi-
brations were considered. They conclude that for a rigid
indenter and low frequencies their analysis do not deviate
much from those of Bycroft [3], but when the frequency
is increased or if the indenter is elastic the pressure dis-
tribution is radically changed and a complete analysis is
necessary.

The mobility is defined as the complex ratio of velocity
to force at the intersection between the indenter and the
plate. It has been shown by means of the classical Kirch-
hoff thin plate equations [2, 9] that the point mobility Y
of an infinite plate can be written as

Y � v

F
=

1

8
p
m00B

(1)

where v is the vibration velocity in the direction normal
to the plate, F is the driving force normal to the plate,
m00 is the mass per unit area and B is the bending stiff-
ness. In [10] Ljunggren discusses the accuracy of equation
(1) and compares it with Mindlin theory and with a three-
dimensional theory in which only the poles corresponding
to the bending waves are taken into account. He shows
that an extra imaginary part appears due to the slight dif-
ference in magnitude between the real and the imaginary
bending-wave poles.

In all analyses describing the motion of ’thin’ struc-
tures, such as in the Kirchoff and Mindlin theories, it is
assumed that the two sides of the structure have exactly
the same displacement at each point. This is an approxi-
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mation and, when excitation is concentrated to an area of
the same size or smaller than the structural thickness, ad-
ditional weakness effects can occur. Moreover, when the
radius of the indenter is of the same size or larger than the
thickness, additional inertia effects can occur due to the
mass under the indenter vibrating in phase.

More detailed three-dimensional analyses have been
carried out, by Paul [11] and by Ljunggren [12] for a rigid
indenter and by Heckl [13] for a soft indenter. Petersson
and Heckl [14] have investigated the influence of differ-
ent choices of pressure distribution. The boundary value
problem is simpler for a soft indenter than for a rigid
one since the pressure distribution under a soft indenter
is given by the problem itself and is constant in space, and
thus Neumann boundary conditions, i.e. prescribed pres-
sures, are found both outside and under the indenter. In
contrast, for a rigid indenter the displacement under the
indenter and the pressure distribution outside the inden-
ter are prescribed, so that mixed Neumann and Dirichlet
conditions are present. This is a more complicated mathe-
matical problem than that for a Neumann condition alone.

Paul [11] investigated plates resting on rigid bases and
those free on the back side. Only the latter are of inter-
est here. The problem was solved in approximate terms
by a method applied earlier to a semi-infinite elastic solid
[4]. However, Paul’s solution does not seem to be cor-
rect, partly since reference is made to ”the root” of the
Rayleigh-Lamb equations without any hint of there be-
ing an infinite number of roots, and partly since the low-
frequency asymptote of the solution approaches the value
of a semi-infinite medium irrespective of the thickness of
the plate [12].

By assuming a pressure distribution under the inden-
ter, Ljunggren [12], and Petersson and Heckl [14] (when
dealing with the rigid indenter) avoided the problem of
needing to solve integral equations. The pressure distribu-
tion taken was that of a rigid indenter statically loading
an elastic semi-infinity. Since there is no guarantee that
this assumption actually results in a uniform displacement
under the indenter, such a case can be designated as quasi-
rigid. In obtaining a solution Ljunggren [12] first found
expressions for the outer field, r � R, and then exam-
ined the displacement at the boundary circle of the inden-
ter, r = R. Finally, the solution was found by means of
contour integration on the basis of the dispersion relation,
although the position of the poles was solved numerically
or by approximation. Since Heckl [13] was considering a
soft indenter, he used a constant pressure distribution. The
mobility was determined by means of numeric calculation
of the displacement at the center of the indenter. A com-
parison of the results obtained can be found in [12] (see
Figure 9 in the reference). Calculated values for the lo-
cal reaction, all based on the same numerical input data,
are presented for the solutions in [13] and in [12]. There
is virtually no agreement at all between the results of the
two studies. As Ljunggren [12] points out, this is scarcely
astonishing in view of the differences in the assumptions
made. Petersson and Heckl [14] achieved their solution
by numerical integration and used the mean displacement

under the indenter as the input for the mobility calcula-
tions, employing the complex input power to obtain the
mean. The pressure distributions considered in [14] were:
the constant (i.e. the soft) distribution, the quasi-rigid, and
the parabolic.

In the present paper the pressure distribution at the in-
terface between the indenter and the plate is found by use
of a variational formulation. The expressions obtained are
approximations, although the choice of these made is an
optimal one. It will be shown that for the quasi-rigid case
the results obtained according to [14] and according to the
approach taken in the present paper are identical. This is
not surprising, since the variational technique is closely
related to the complex input power. What is special for
the present paper is the use of a variational technique for
solving the problem and the improved solution this pro-
vides. The latter can be verified by comparing the results
obtained with those reported in the literature, which indi-
cates that the boundary condition are much close to being
fulfilled in the present case (see Figure 9 and 10). The or-
ganisation of the paper is as follows: the problem under
investigation is described in section 2, the variational for-
mulation is presented in section 3, and is used in section 4
to provide a solution, the results of various earlier works
are expressed in terms of the present notations in section 5
allowing comparisons to be made, the numerical approach
taken is examined in section 6, the numerical results ob-
tained are presented in section 7, the overall results are
discussed in section 8, and in section 9 the conclusions
drawn are summarized.

2. Formulation of the problem

The situation to be analysed is that of an indenter acting on
a plate of finite thickness, shown in Figure 1. It is assumed
that the indenter is circular, weightless and stiff compared
with the plate, that the plate is isotropic and that the fre-
quencies are within the audible range. The theory is to be
a linear one. What is sought is the point mobility Y of the
excitation situation, and thus the force acting on the inter-
face between the indenter and the plate, when the inden-
ter is displaced the distance wie

i!t, where the time depen-
dence ei!t is henceforth suppressed, and where i =

p�1
is the imaginary unit, ! = 2�f is the angular frequency
and t is time. The loading of the surrounding medium is
not included in the analysis. Only forces in the direction
normal to the plate are considered. Thus, no friction forces
between the indenter and the plate is included. The term
’admittance’ is in the present analysis used to denote the
ratio of spatially harmonic velocity to spatially harmonic
pressure, whereas ’mobility’ is used for point or field ra-
tios of velocity to force.
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r

z

d

R

w
i

Figure 1. A rigid indenter of radius R acting on a plate of thickness
d. The indenter is displaced the distancew i.

2.1. Boundary conditions

For a stiff indenter, the boundary conditions on the upper
surface are(

w(x; y; 0) = wi for r � R and z = 0
p(x; y; 0) = �z = 0 for r > R and z = 0

(2)

where r =
p
x2 + y2 is the distance from the center of

the indenter, p(x; y; 0) is the pressure acting on the upper
surface of the plate and w(x; y; z) is the displacement of
the plate. For the bottom side of the plate, the boundary
conditions are

p(x; y; d) = �z = 0 for z = d; (3)

The tangential shear stresses in the x-y-plane at the sur-
faces z = 0 and z = d are set to be zero for 0 � r � 1,
and thus also under the indenter. Note that the displace-
ment of the indenter wi is a real constant (provided the
time dependence eiwt is suppressed), and that the pres-
sure p and the displacement w are generally complex. The
force is found as the integral of the pressure field under the
indenter,

F =

Z



p(r)dA = 2�

Z R

0

p(r)rdr: (4)

The point mobility is then found as

Y =
v

F
=

i!wi

2�
R R
0
p(r)rdr

: (5)

Thus, when the actual pressure distribution has been ob-
tained, then the problem is solved.

2.2. A spatially harmonic excited plate

The boundary conditions at z = 0, equation (2), is not a
prescribed pressure. In order to solve the problem never-
theless, consider first a plate excited by a time- and space-
harmonic pressure, Figure 2. These pressure components

r

z

d

p(x,y)

Figure 2. A spatially harmonic excited plate.

will be integrated in section 2.3 to form the actual dis-
placement field. The formulation, similar to that in Ljung-
gren [10, 12], involves the plate being excited by a pres-
sure in the form

~p(0)e�ikxx�ikyy

where thereafter the argument z = 0 is suppressed. The
vertical displacement w(x; y; z) can then be written as

~w(z)e�ikxx�ikyy

where kx and ky are the excitation wavenumbers in the x-
and the y-direction, respectively. The pressure field needs
now to be associated with the displacement field by way of
admittances, the field being regarded as the superposition
of an antisymmetric and a symmetric mode. In this way,
the boundary conditions (3) at z = d are automatically
fulfilled when the two modes are combined.

Consider the displacement at z = 0 and z = d,

~w(0) =
�
AA +AS

�
~p=i!

~w(d) =
�
AA �AS

�
~p=i! (6)

where the admittance for the antisymmetric and the sym-
metric mode, as used e.g. in [10, 12, 13, 14], is given as

AA =
�i!�k2T =2��

k2r + �2
�2

tanh(�d=2)� 4��k2r tanh(�d=2)

AS =
�i!�k2T =2��

k2r + �2
�2

coth(�d=2)� 4��k2r coth(�d=2)
(7)

using the notations

k2r = k2x + k2y

and

�2 = k2r � k2L; �2 = k2r � k2T ;
k2L = �!2=(�+ 2�); k2T = �!2=�;

the Lam�e constants � and � being employed. The con-
stants kL and kT are the longitudinal and the transverse
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wavenumber respectively, and � is the density of the ma-
terial in the plate. Since only the upper surface of the plate
is of interest, where z = 0, the following abbreviation is
used,

A = AA +As:

The actual field for any given excitation can be found by
means of the inverse Fourier transform, such that

w =
1

4�2

Z 1

�1

Z 1

�1

~we�ikxx�ikyydkxdky (8)

which gives the displacement for a given spatial displace-
ment component ~w. The corresponding Fourier transform
is

~w =

Z
1

�1

Z
1

�1

weikxx+ikyydkxdky (9)

which represents a transform pair.

2.3. Plates excited by a rigid indenter

Consider now a plate excited by a rigid indenter, see Fig-
ure 1. When the excitation is of a pure force type, i.e. with-
out moment or rotational excitation, the situation is polar
symmetric. The two-dimensional Fourier transform then
changes to a Hankel transform. Hence, change to polar
coordinates,

kx = kr cos �; ky = kr sin �

and dkxdky = krdkrd�. Equation (8) can then be written
as

w =
1

4�2

Z 2�

0

Z 1

0

~we�ikr(cos �x+sin �y)krdkrd� (10)

Polar symmetry implies there to be no angular dependence
in the displacement field. Thus,

w =
1

4�2

Z 1

0

~w

Z 2�

0

e�ikr(cos �x+sin �y)krdkrd�

The inner integral equals 2� times the Bessel function of
zero order. Equation (10), where r denotes the radius from
the origin, can be written as

w =
1

2�

Z 1

0

~wJ0(krr)krdkr (11)

which is the ’ordinary’ Hankel transform, except for the
factor 1=2�, see e.g. [15], due to the 4�2 in the defini-
tion above of the 2-dimensional inverse Fourier transform.
Equation (11) will be used as the present definition of the
Hankel transform.

The displacement of the upper surface of the plate,
where z = 0, is

w(r) =
1

2�

Z 1

0

~p

i!
A(kr)J0(krr)krdkr (12)

where the admittances A(kr) are the same as in equation
(7), where they are already written in polar coordinates.

The pressure distribution under the indenter is still un-
known. The transformed pressures are found, using the
Hankel transform and the same definition as in (11). The
Hankel transform pair for the pressure is then

~p(kr) = 2�

Z
1

0

p(r)J0(krr)rdr; (13)

p(r) =
1

2�

Z 1

0

~p(kr)J0(krr)krdkr:; (14)

allowing the boundary conditions in equation (2) to be
written, by the use of (12) and (14), as�

1
2�

R
1

0
~p
i!A(kr)J0(krr)krdkr = wi for r � R

1
2�

R
1

0
~p(kr)J0(krr)krdkr = 0 for r � R

(15)

The second condition in (15), applied to equation (13), can
be expressed as

~p(kr) = 2�

Z R

0

p(s)sJ0(krs)ds (16)

where s is a new integration variable. Insert (16) into the
first expression in equation (15) and interchange the order
of integration. The inner integral can be regarded then as
a kernel. Hence, a kernel K can be defined as

K(r; s) =

Z 1

0

J0(krs)A(kr)J0(krr)krdkr (17)

The kernel K is symmetric in terms of r and s, K(r; s) =
K(s; r). The first expression in equation (15) can then be
written as

1

i!

Z R

0

p(s)sK(r; s)ds = wi for r � R (18)

This is a Fredholms integral equation of the first kind. In
order for it to be symmetric, make the following substitu-
tions

q(r) � p(r)r; v � i!wi; (19)

where v is the velocity of the indenter. This allows the
integral equation (18) to be written asZ R

0

q(s)K(r; s)ds = v for r � R (20)

The function q in (20) is to be determined.

3. Variational formulation

The integral equation (20) is to be approximately solved
by use of a variational technique, described by Morse and
Ingard [16]. This approach provides a close approxima-
tion of the pressure and a very close approximation of the
integral of the pressure, i.e. of the force F . Since the com-
ponents of the integral equation, including the kernel, are
complex, an adjoint approach is employed. This involves
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the physical situation being made symmetric in terms of
the complex power. The correctness of the variational for-
mulation is checked by calculating the displacement under
the indenter and comparing it with the boundary condi-
tions, see Figures 9 and 10.

Multiply equation (20) by the complex conjugate q � and
integrate the entire expression from 0 to R. The resulting
equation can be written as

0 =

Z R

0

q�(r)vdr

�
Z R

0

q�(r)

Z R

0

q(s)K(r; s)dsdr: (21)

Define a functional now as

V �
Z R

0

q(r)v�dr: (22)

Adding equations (21) and (22) results then in the varia-
tional formulation of the problem,

V =

Z R

0

q(r)v�dr +

Z R

0

q�(r)vdr

�
Z R

0

q�(r)

Z R

0

q(s)K(r; s)dsdr: (23)

The pressure field that gives the functional (21) a station-
ary point is the best choice in a variational sense. The
physical meaning of the functional V is found by compar-
ing definition (22) with the expression for the force (4),
which can be written as

�in = �V:

Thus, the functional V is proportional to the complex in-
put power, denoted as �in. The force can be expressed in
terms of the functional as

F = �2�V=v:

4. Variational solution

The variational formulation (23) will now be used to find
an approximate solution. The result of using one constant
is examined first, and then of using two constants.

4.1. One constant

Assume a pressure distribution that corresponds to the
semi-infinite case, used by e.g. Ljunggren [12] and Peters-
son and Heckl [14] (in dealing with the quasi-rigid case),

p(r) = c=
p
R2 � r2; (24)

where c is the constant to be determined. With this pres-
sure distribution, the variational formulation (23) becomes

V = (cv� + c�v)

Z R

0

rp
R2 � r2

dr

� cc�
Z R

0

rp
R2 � r2

Z R

0

sK(r; s)p
R2 � s2

dsdr;(25)

where the identityZ R

0

rp
R2 � r2

dr = R

can be used to simplify the expression. A stationary point
is solved for by means of derivation

@V
@c�

= 0 = vR

� c

Z R

0

rp
R2 � r2

Z R

0

sK(r; s)p
R2 � s2

dsdr (26)

Thus, the constant c that best fits the variational formula-
tion of the present pressure distribution is

c = vR=

Z R

0

rp
R2 � r2

Z R

0

sK(r; s)p
R2 � s2

dsdr: (27)

The input mobility can then be determined from equations
(4) and (27) as being

Y =
1

2�R2

Z R

0

rp
R2 � r2

Z R

0

sK(r; s)p
R2 � s2

dsdr: (28)

Inserting the expression for the kernel, equation (17), in-
terchanging the order of integration and utilizing the rela-
tion [15]Z R

0

rJ0(rkr)drp
R2 � r2

=
sin(Rkr)

kr

yields

Y =
1

2�R2

Z 1

0

sin2(Rkr)

kr
A(kr)dkr (29)

This result is equivalent to the result in [14] for a quasi-
rigid pressure distribution. Although it does not appear to
be possible to calculate this integral analytically, it can be
calculated by use of numerical integration, see sections 6
and 7.

The pressure wave number spectrum (16) for the pres-
sure distribution considered here is determined as being

~p(kr) = 2�c sin(Rkr)=kr: (30)

The displacement at the upper surface is then calculated
from equations (12) and (30)

w(r) =
c

i!

Z 1

0

sin(Rkr)J0(rkr)A(kr)dkr: (31)

4.2. Two constants

Another pressure distribution is now assumed, one that
combines the distribution in equation (24) with a constant
pressure distribution,

p(r) = c1=
p
R2 � r2 + c2: (32)
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Using two constants allows the pressure field to form it-
self more freely since an additional degree of freedom is
present. With this pressure distribution, the functional (23)
becomes

V = v�(c1R+ c2R
2=2) + v(c�1 + c�2R

2=2)

� c1c
�

1Ia � c1c
�

2RIb � c2c
�

1RIb � c2c
�

2R
2Ic (33)

where

Ia =

Z R

0

r=
p
R2 � r2

Z R

0

sK(r; s)=
p
R2 � s2dsdr;

RIb =

Z R

0

r

Z R

0

sK(r; s)=
p
R2 � s2dsdr;

R2Ic =

Z R

0

r

Z R

0

sK(r; s)dsdr:

A stationary point is solved for by means of derivation in
c�1 and c�2. This yields the system of equations"

Ia RIb
RIb R

2Ic

#"
c1
c2

#
=

"
vR

vR2=2

#
: (34)

Solving (34) gives the two constants

c1 = (Ic � Ib=2)vR=� (35)

c2 = (Ia=2� Ib)v=� (36)

where the determinant is

� = IaIc � I2b :

Using (4) yields the mobility,

Y =
1

2�R2

�

Ic � Ib + Ia=4
: (37)

The integrals Ia; Ib and Ic are simplified by interchang-
ing the order of integration. Ia is identified from equations
(28) and (29)

Ia =

Z 1

0

sin2(Rkr)

kr
A(kr)dkr: (38)

For the other two integrals the identity [15]

Z R

0

J0(krr)rdr = J1(krR)R=kr

is employed. The integral Ib then reads

Ib =

Z 1

0

J1(krR) sin(Rkr)

kr
A(kr)dkr; (39)

and Ic is

Ic =

Z 1

0

J21(krR)

kr
A(kr)dkr : (40)

These two integrals are not solved analytically but are in-
tegrated numerically, as dealt with in sections 6 and 7.

The pressure wave number spectrum (16) is determined
as

~p(kr) =
2�

kr
(c1 sin(Rkr) + c2RJ1(Rkr)): (41)

The displacement is determined then from equations (12)
and (41)

w(r) =
c1
i!

Z 1

0

sin(Rkr)J0(rkr)A(kr)dkr

+
c2R

i!

Z
1

0

J1(Rkr)J0(rkr)A(kr)dkr (42)

= c1Id(r)=i! + c2RIe(r)=i!;

in which the integrals Id(r) and Ie(r) are defined.

5. Comparison with earlier works

Ljunggren’s [12] conception of the mobility of a rigid in-
denter, expressed in terms of the present notations, is that

Y =
1

2�R

Z 1

0

sin(krR)J0(krr)A(kr)dkr; (43)

where r ! R, the integral being Id(R). Ljunggren solves
this integral by means of contour integration, but uses nu-
merical approximations for the poles.

The result for a soft indenter that Ljunggren [10] and
Heckl [13], in terms of the present notations, can be ex-
pressed as

Y =
1

�R

Z 1

0

J1(krR)J0(krr)A(kr)dkr; (44)

where r ! R in [12] and r ! 0 in [13], and the respective
integrals are Ie(R) and Ie(0) .

In Petersson and Heckl [14] the result for a rigid inden-
ter is identical to equation (29),whereas the result for a soft
indenter is

Y =
1

2�R2

Z 1

0

J21(krR)

kr
A(kr)dkr; (45)

the integral in this case being Ic.

6. Numerical evaluation

Special attention will be directed now at how the numer-
ical integration of the integrals presented in the previous
sections should be carried out. The main numerical inte-
gration method is that of adaptive gaussian quadrature. In
order to shift the singularities contained in A(kr) off the
real axis, and ensure numerical stability, a certain amount
of hysteretic damping needs to be introduced (� = 10�4

is used in the numerical examples in section 7). The real
part and the imaginary part of the integrands are integrated
separately in order to make fully use of the adaptive rou-
tine.
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The tail of the integration needs to be dealt with. The
integrals in equations (38) to (40) can be expressed as

Ii = R2

Z 1

0

Ei(kr)A(kr)krdkr; i = a; b; c (46)

where

Ei(kr) =

8<
:

sin2(krR)=(krR)
2 for i = a

sin(krR)J1(krR)=(krR)
2 for i = b

J21(krR)=(krR)
2 for i = c

; (47)

and for the integrals used for calculating the displacement

Ei(kr) =

�
sin(krR)=(krR

2)J0(krr) for i = d
J1(krR)=(krR

2)J0(krr) for i = e
: (48)

The integrals (46) can separated into two parts,

Ii = R2

Z M

0

Ei(kr)A(kr)krdkr

+ R2

Z 1

M

Ei(kr)A(kr)krdkr = IIi + IIIi (49)

where a sufficiently large M is selected that
tanh(�d=2) � tanh(�d=2) � 1, provided that the
imaginary part of � and � can be neglected. Accordingly,
in the integrals I IIi the admittance A(kr) reduces to

A(kr) = � i!�k2T =�

(k2r + �2)2 � 4��k2r
:

From the fact that here k2r >> 1, and therefore

A(kr) =
i!=�

2kr (1� k2L=k
2
T )

; (50)

it follows that

IIIi � i!R2

4�

Z 1

M

Eidkr =
i!R2

2 (1� k2L=k
2
T )�

�
�Z 1

0

Eidkr �
Z M

0

Eidkr

�
(51)

in which the definite integral over the semi-infinite range is
established analytically for all Ei(kr) contained in equa-
tion (47),Z 1

0

Eadkr = �=2RZ 1

0

Ebdkr = �=4RZ 1

0

Ecdkr = 4=3�R (52)

and for the integrals used to calculate the displacement, as
given in (48)R1

0
Eddkr

=

�
�=2R2 for 0 < r < R
arccosec(r=R)=R2 for r > RR1

0 Eedkr
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Figure 3. Mobility, real part. Geometric ratio d=R =

f0:25 0:5 1 2 4 8g, thickness d = 2 � 10�2 m. Equation (37).
The order of the lines is; —, � � �, - - -, –Æ–, –+– and –�–.

=

�
1
R2F ( 12 ;� 1

2 ; 1; (
r
R
)2) for 0 < r < R

1
2rRF ( 12 ;

1
2 ; 2; (

R
r
)2) for r > R

(53)

where F (a; b; c; z) is a hypergeometric function, see Ap-
pendix.

7. Numerical results

In this section numerical results will be presented. Unless
specified otherwise, the following input data are involved:
� = 840 kg=m3, � = 1:1538 �109 Pa and � = 7:6923 �109
Pa (Young’s modulus E = 2 � 109 Pa and Poisson’s ra-
tio � = 0:3). The damping, introduced in the elastic con-
stants, is set to � = 10�4.

7.1. Mobility

In Figures 3 and 4 the radius of the indenter varied, such
that R = f80 40 20 10 5 2:5g � 10�3 m whereas the plate
thickness was held constant d = 2 � 10�2 m. Thus, the
geometric ratio is changed as d=R = f0:25 0:5 1 2 4 8g.
The mobility was calculated using equation (37).

In Figures 5 and 6 the radius of the indenter
was held constant R = 10�2 m, whereas the
plate thickness was changed in accordance with d =
f5 10 20 40 80 160 320g � 10�3 m . Thus, the geomet-
ric ratio is changed as d=R = f0:5 1 2 4 8 16 32g. The
mobility was calculated using equation (37).

In Figures 7 and 8 the mobility is calculated using equa-
tion (29), which gives the same result as in [14], and equa-
tion (37). Whereas in Figure 7 the radius is R = 80 � 10�3
m, in Figure 8 it is R = 5 �10�3 m. In both cases the thick-
ness is d = 2 � 10�2 m, the other data is kept the same as
before.
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7.2. Spatial dependency of displacement and pressure

Since the solution technique employed is an approximate
one, it is important to examine the extent of disagreement
between the resulting displacement (indentation) and the
displacement of the completely rigid indenter in terms of
the boundary conditions (2).

In Figures 9 and 10 show the displacement for 0 � r �
2R, normalised to the boundary condition, w(r)=w i. Note
that the scale is reversed. The geometric parameters were
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Figure 6. Mobility, imaginary part. Geometric ratio d=R =

f0:5 1 2 4 8 16 32g, radius R = 10
�2 m. Equation (37). Note

the reversed scale for the negative values. The order of the lines are;
—, � � �, - - -, –Æ–, –+–, –�– and –2–.
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Figure 7. Mobility, real part equation (37) solid (—), real part equa-
tion (29) dotted (� � �), imaginary part equation (37) dash-dotted
(- - -), and imaginary part equation (29) dashed (–Æ–). Note the re-
versed scale for the negative values.

chosen as R = d = 2 � 10�2 m. The frequency is f = 100
Hz in Figure 9 and f = 1000 Hz in Figure 10.

In Figure 11 and 12 the pressure is shown as a func-
tion of the radius for the interval 0 � r � R, both the
one-constant (� � �) and the two-constant case (—) being
presented for comparison purpose. The geometric param-
eters were chosen once again as R = d = 2 � 10�2 m, the
frequency being f = 100 Hz in Figure 11 and f = 1000
Hz in Figure 12.
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8. Discussion

Unless indicated otherwise, the discussion concerns the
two-constant cases according to section 4.2.

The frequency dependency of the mobility for different
values of d and R is typically as follows: For low frequen-
cies the real part of the mobility, Y<, is equal to the result
given by equation (1), 1=8

p
m00B. When the geometrical

ratios are approximately in the region 0 < d=R < 2 the
real part Y< decreases with an increase in frequency. For
a geometrical ratio larger than approximately d=R > 2,
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Figure 10. Indentation, real and imaginary part. Frequency f =

1000 Hz. Equation (31), one constant, dash-dotted line (– � –), and
(42), two constants, solid line (—).

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20
x 10

8

R
e{

p}
  [

P
a]

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8

10
x 10

9

radius r/R [−]

Im
{p

} 
 [P

a]

Figure 11. Pressure, real and imaginary part. Frequency f = 100

Hz. Equation (24), one constant, dash-dotted line (– � –), and (32),
two constants, solid line (—).

it is the real part Y< which instead increases with an
increase in frequency, as can be seen in Figures 3 and
5. The imaginary part of the mobility, Y=, is predom-
inantly negative when the geometrical ratio is approxi-
mately 0 < d=R < 2, and is positive when d=R > 2.
A positive imaginary part Y= can be regarded as an elastic
deformation near the indenter, whereas a negative imagi-
nary part Y= can be regarded as representing inertia effects
near the indenter. However, the sign of Y= can also be con-
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Hz. Equation (24), one constant, dash-dotted line (– � –), and (32),
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sidered as being a consequence of the causality principle.
The main consequence of the causality here is well-known
from linear system theory, through the principle that the
real and the imaginary part of the frequency response
function are interrelated. In the present situation the fre-
quency response function is the mobility Y = Y< + iY=.
The relations linking the real and the imaginary parts of
the frequency response function are generally referred to
as Kramers-Kronig dispersion relations. The local (and
approximate) version of these dispersion relations can be
written [17, 18] as

Y= � �!

2

dY<
d!

� �

4:6

dY<(!)

d(log!)
(54)

Thus, when the real part Y< has a positive derivative, the
imaginary part Y= is positive and ’spring-like’, whereas
when Y< has a negative derivative, Y= is negative and
’inertia-like’. This can be observed in Figures 3 to 6.

Some of the roughness for high frequencies in Figures
3 to 6 is due to numerical instability in the integration that
is somewhat magnified in the evaluation as subtraction is
present in equation (37).

In Figures 7 and 8, one-constant mobility, equation (29),
and the result for [14], are compared with two-constant
mobility, equation (37). Whereas in Figure 7 the two re-
sults disagree, in Figure 8 they are in principle identical.
The difference between the results for the two calculations
is that in Figure 7 the geometric ratio is d=R = 0:25,
whereas in Figure 8 the geometric ratio is d=R = 4. Thus,
consideration of the more elaborate two-constant case ap-
pears to be necessary in dealing with small geometric ra-
tios. As can be seen, the real part Y< in the one-constant
case involves zeros, whereas there are no zeros in the two-
constants case. This can be interpreted as a wave-trace-

matching effect, analogous to the coincidence effect in
airborne sound radiation, when the spatial dependency of
the pressure field is unable to change. Note that the actual
physical pressure is able to change its spatial dependency,
and that the wave-trace-matching effect is thus not likely
to occur in the actual situation. This argumentation holds
for all theories with a fixed spatial dependency of the pres-
sure. As indicated, Figures 7 and 8 gives an idea of how
the present analysis is related to the analysis presented by
Petersson and Heckl [14]. The other analysis, equations
(43) and (44), can be analysed by considering the spatial
dependency of the displacement in Figures 9 and 10, since
the same integrals, Id(r) and Ie(r), are involved. Equation
(43) is to describe the mobility of a rigid indenter, the spa-
tial dependency of Id(r) appearing as the dotted line (� � �)
in Figures 9 and 10, where r = R. Since the radius r = R
is a special case, as can be seen in the figures, the correct-
ness can be questioned. The same argumentation holds for
equation (44). The soft indenter in Petersson and Heckl
[14], equation (45), is included for comparison purposes.

The spatial dependency of the displacement is exam-
ined in Figure 9 and is compared with the boundary condi-
tion. As can be clearly seen, the boundary condition, equa-
tion (2), are much better fulfilled in the two-constant case
than in the one-constant case, equation (42). This result
can be regarded as surprisingly good, in view of the so-
lution technique being only approximate. The spatial de-
pendency of the pressure field is shown in Figures 11 and
12. The pressure for the one-constant case is compared
there with that for the two-constant case. The two-constant
pressure typically changes sign as the radius r increases;
the sign is negative for both the real and the imaginary
parts at approximately r=R < 0:8� 0:9, and is positive at
r=R > 0:8�0:9. Since the one-constant pressure is fixed,
it cannot change sign. Note that in both cases a singularity
occurs at r = R, the figures there being truncated.

9. Concluding remarks

A variational technique is used to determine the mobility
of a rigid indenter that acts on a plate of finite thickness.
In this approach, a particular spatial form of the pressure
field under the indenter is assumed, the constant magni-
tude of this assumed field best satisfying the variational
formulation is found by means of optimisation. The func-
tional that is used in the variational formulation is iden-
tified as the complex input power. Two types of pressure
distributions are analysed, a distribution with one constant
p(r) = c=

p
(R2 � r2), and a distribution with two con-

stants p(r) = c1=
p
(R2 � r2) + c2. The latter yields a

more elaborate result. Expressions for the mobility involv-
ing integrals that need to be calculated numerically are
derived for both cases. Numerical results are presented,
its being shown that the imaginary part of the mobility
can have either a positive or a negative sign, depending
on the derivative of the real part. It is also shown that, for
small geometric ratios d=R in particular, the more elabo-
rate two-constant case is needed for describing the mobil-
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ity, especially of the imaginary part. Thus, the hypothesis
that in the expressions in the literature, the imaginary part
of the mobility is not entirely correct cannot be rejected.
It is also shown that the two-constant analysis is close to
fulfilling the boundary conditions, and is thus also close
to being a correct analysis. The present analysis is thus an
improvement on earlier analysis.
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Appendix

The hypergeometric function F (a; b; c; z) is implemented
by use of the Gauss hypergeometric series [19]

F (a; b; c; z) =
�(c)

�(a)�(b)

1X
n=0

�(a+ n)�(b+ n)

�(c+ n)

zn

n!
(A1)

which has a convergence circle of jzj = 1. When the sum
is used in numerical calculations, it is truncated.
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Summary
The ISO standard tapping machine, used as an excitation source in rating the impact-sound level of a floor structure,
interacts with the floor structure during the hammer impact. Expressions for the force spectrum due to the impact are
presented. The 6 dB difference at low frequencies of the force spectrum, evident in measurements, and reasons for it, are
discussed. The interaction is investigated by use both of simplified lumped models and arbitrary frequency-dependent
models. Local effects due to indentation near the point of impact and to global effects due to stiffeners are included in
the description of the mobility involved. Numerical results are presented, where it is concluded that both the local and
the global effects of the driving-point mobility are important in describing the force spectrum caused by the interaction
between the tapping machine and the complex floor structure.

PACS no. 43.40.Dx, 43.40.Kd, 43.55.Ti

1. Introduction

The use of lightweight building techniques has increased
during the last few years. It is well-known, however, that
structures of this type often have poor impact-sound insu-
lation. A prediction model is an important tool in develop-
ing structures that have acceptable insulation characteris-
tics and in explaining how they function. A model for pre-
dicting impact noise can be said to consist of three parts:
the excitation, the system and the response. The present
paper focuses on the excitation part. Point impact exci-
tation can be caused by e.g. footsteps or the impact of
dropped items. Excitation can also be prodused by the ISO
standard tapping machine [1], as dealt with in the present
paper. Thus, the paper aims at deriving expressions for the
force spectrum produced by the impact of a hammer on a
lightweight floor.

The system, or more specifically the representation of
the floor system in question, is important not only as a
transfer part from excitation to response, but also of de-
riving the impact force. It is important, therefore, that at-
tention be directed at the interaction between the hammer
and the floor. The system and the response are examined
in greater detail in [2], in which measurements are also
compared with predictions derived from a model. A com-
prehensive survey of the literature on prediction model ap-
proaches is presented in [3].

The ISO standard tapping machine can be used as an
excitation source for rating the impact-sound level of a
floor structure. Although the machine provides no genuine
simulation of real footsteps, the test results obtained yield
valuable information concerning the dynamic behaviour
of the floor. If the description of the tapping machine as a
source is sufficiently thorough and precise, it may be pos-
sible sometime in the future to solve the problem of the
correlation between sound disturbances by footsteps and
the impact sound level produced by the machine.

Cremer has derived the impact noise level caused by
a tapping machine for homogenous structures of high
impedance, the results being summarised by Cremer and
Heckl [4, pp. 269–271, 333–339]. In dealing with a bare
slab Cremer makes use of momentum calculations that as-
sume there to be a perfect elastic impact (described in sec-
tion 2 of the present paper) the results are quit satisfactory.
However, when taking into account the effects of a re-
silient floor covering, Cremer’s description of the problem
implies that the hammer becomes stuck to the floor after
impact. This leads to resonant behaviour that is not to be
found in measurements according to the ISO standard. In
fact, the hammer rebounds after impact, there being only
an initial positive force pulse present, a matter investigated
by Lindblad [5]. Also, regarding linear excitation Lind-
blad considered the effect of an energy-consuming part of
the deformation, conceived as a resistance in series with
a spring to represent the resilient covering. The resistance
can be due to local material damping or, as in the present
study, to energy being transported within the plate away
from the region of impact. For heavy slabs, as considered
in references [4, 5, 6], the resilient part is due to the floor
covering. Lindblad’s major interest, however, was in the
non-linear behaviour of coverings that interact with the
hammer. Vér [6] derived a complete and accurate descrip-
tion of the force spectrum and the impact noise level a
tapping machine produces on hard surfaces, including the
rebound. The improvement in insulation achieved by use
of an elastic surface layer (floor covering) or of floating
floors with surfaces of high impedance is also considered.

A lightweight floor structure can usually not be re-
garded as a homogenous structure of high impedance. It
consists of thin plates of wood, chipboard, gypsum, or
whatever, and is reinforced by joist stiffeners. Thus, it
cannot be assumed that the force spectrum in [4, 5, 6]
is applicable generally. Nevertheless, in more recent pa-
pers on impact-sound insulation, such as Gerretsen [7], the



2 Author: J. Brunskog, P. Hammer
Div. Engieering Acoustic

TVBA– 3105 C (2002)

momentum model of Cremer and Heckl [4] has contin-
ued to be used, also for non-homogenous or lightweight
floors. Thus, it is common to assume the force spectrum
to be invariant with respect to the excitation system (i.e.
of its being a linear source with infinite source mobility).
In the present paper no such assumption is made. In an-
other recent paper, by Scholl et al. [8], the interaction be-
tween the source, the floor covering and the floor structure
is considered. However, the floor structure is represented
by the mass of the structure, not taking into account that
the driving-point impedance of a plate on average has the
characteristics of a resistance (i.e. 8

p
m00B), and in gen-

eral is complex. Thus, no energy (or momentum) consum-
ing part is included in the model used by Scholl.

Measurements, such as those of Hall’s [9], indicates
there to be a 6 dB gap at low frequencies between the
force (or acceleration) spectrum of a hammer impacting
on a high impedance surface such as concrete and its im-
pacting on a low impedance surface such as an mdf-board.
This can easily be explained in terms of simple momen-
tum consideration in a manner comparable with the case
to which Cremer’s [4] calculations but letting the hammer
be stuck to the plate, as will be taken up in section 2.

The organisation of the paper is as follows: In order
to obtain a force spectrum of a form suitable for the so-
lution technique applied to the system described in [2],
the findings reported in [4, 5, 6] are integrated and re-
analysed in sections 2 and 3, several numerical examples
being provided there. A system of arbitrary frequency-
dependent driving-point mobilities is then added in section
4, in which different causes for the frequency-dependent
driving-point mobilities are discussed. The procedure for
evaluating these mobilities numerically is described in
section 5. The numerical results are presented in section
6, the conclusions being summarized, finally, in section 7.

The present analysis is based on linear theory imply-
ing that the contact area during impact is constant, as dis-
cussed in section 3.2. The displacement of the receiver
structure is in addition small, and therefore assumed to be
within the linear range. It should be noted, however, that
a direct linear-system analysis is not applicable since the
system is changed when the object producing the impact
leaves the structure with which it has had contact. Thus,
the boundary condition between the object and the struc-
ture is rather being an inequality than an equation, and the
situation is not time-invariant.

2. The hammer impact force in the time and the
frequency domain

The ISO standard tapping machine [1] consists of five
hammers spaced equally along a line 40 cm in length.
As an approximation, it is assumed here, however, that all
hammer impacts act on the same position. Each hammer
has a mass of M = 0:5 kg and it is dropped from a height
h of 4 cm. The hammers strike the floor with a rate of
fr = 10 times per second, giving a repetition time of Tr =

1=fr = 0:1 s. Consider initially, however, a single ham-
mer impact with the force time history f1(t). The Fourier
spectrum of this force pulse is F1(f) = Ftff1(t)g, Ftf�g
being the Fourier transform operator (time to frequency).
In the present paper, the word spectrum is used to denote
a function in the (Fourier) frequency domain. The excita-
tion caused by the tapping machine can be regarded as an
array of separate force pulses f1(t). The time history of
the repeated force fR(t) is thus

fR(t) =
1X

n=�1

f1(t� nTr): (1)

This time history is a periodic signal. Accordingly, it can
be represented by a Fourier series, e.g. by the two-sided
complex Fourier series

fR(t) =

1X
n=�1

Fne
i2�nt=Tr : (2)

The signal is represented by a Fourier series consisting of
an infinite number of discrete frequency components of
amplitude Fn. The Fourier spectrum for the signal is the
tonal spectrum

FR(f) = FtffR(t)g =
1X

n=�1

FnÆ(f � nfr) (3)

where FR(f) denotes the spectrum of the repeated signal.
It was used in [2] as the excitation force of the system,
whereas Æ denotes the Dirac delta function. Each ampli-
tude is given by

Fn =
1

Tr

Z Tr

0

f1(t)e
�i2�nt=Trdt (4)

where, as indicated above, f1(t) is the force time history
of a single hammer impact. This integral is identical with
the Fourier transform of the individual force pulse except
for the factor 1=Tr. Thus, for the tapping machine the re-
peated force components Fn is 10 s�1 times the force
spectrum for a single impact. If a trigonometric Fourier
series is used instead, each sine or cosine component is
twice that in (4). This is due to the two-sided representa-
tion described in (2), which is the most suitable represen-
tation in the present situation, since the force spectrum is
used in a two-sided model, i.e. one in which there is as-
sumed to be an eiwt dependence. Cremer [4] and Vér [6]
used a one-sided representation, together with a RMS and
a (third) octave band procedure.

For low-frequency components the force pulse is usu-
ally short compared with the period of interest. Ac-
cordingly, the Fourier amplitude of the force pulse
train during the effective interval of the force pulse,
exp(�i2�nt=Tr) � 1, can be approximated by

Fnjf!0 =
1

Tr

Z Tr

0

f1(t)dt (5)
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Figure 1. Model of hammer impact

which is the mechanical impulse divided by Tr, the me-
chanical impulse being equal to the change in momen-
tum. The hammer hits the slab with a velocity �0 =
(2gh)1=2 = 0:886 m/s. If the impact is purely elastic, the
momentum of the hammer after impact is equal in mag-
nitude to that prior to impact but is of the opposite sign,
the hammer lifting from the slab with the velocity �0.
Thus, Fnjf!0 = 2M�0=Tr = 8:859 N (where for a sin-
gle force pulse the corresponding low-frequency asymp-
tote is F1jf!0 = 2M�0). Since this is the highest pos-
sible low-frequency asymptote of the impact spectrum, it
is the maximum value for the magnitude of the spectrum.
At the other extreme, if the impact is so damped that the
entire momentum is dissipated during impact, the ham-
mer does not rebound. The mechanical impulse is then
Fnjf!0 = M�0=Tr = 4:430 N (F1jf!0 = M�0). This
is the lowest possible low-frequency asymptote of the im-
pact spectrum. Thus, these two cases constitute the upper
and lower bounds of the low-frequency asymptote of the
force spectrum, which represents a span of 4.429 N, or 6
dB. As indicated above, this span can be clearly seen in
measurements that have been made [9].

3. Impact force and lumped system

In order to include cases between the two extremes just
referred to, a lumped model can be employed, one that
provides a somewhat more realistic description than that
of momentum consideration does. The model and the so-
lution arrived at are taken from Lindblad [5], whereas the
physical situation and the analysis are new. A treatment of
general frequency-dependent impedances is found in sec-
tion 4.

3.1. A single slab, interaction between hammer and floor

A lumped model of the impact of the hammer on a single
slab floor is shown in Figure 1. The floor consists of a re-
silient part and an energy consuming part, represented by
a spring with stiffness K and by a dashpot with resistance
R, respectively. The physical meaning of the two compo-
nents is discussed in section 3.2.

When the hammer has reached the slab, the differential
equation for the system assumed is

M@2�K=@t
2 = K(�K � �R)

K(�R � �K) = R@�R=@t (6)

where �K and �R are displacements. Under the initial con-
dition �0, and assuming frequency independent K and R,
the solution is found to be [5]

f1(t) =

(
�0K

sinh(
oct)

oc

e�Kt=2R; KM � 4R2

�0K
sin(
uct)


uc
e�Kt=2R; KM < 4R2

(7)

which of these applies depending on whether the oscilla-
tion is overcritical or not, where


oc =
p
(K=2R)2 �K=M


uc =
p
K=M � (K=2R)2

are the overcritical and the undercritical angular fre-
quency, respectively. In Lindblad [5] the first of these is
denoted as the ’stuck to the floor’ case and the latter as the
’rebound’ case. If an overcritical oscillation is present, a
numerically more appropriate form would be to write the
expression in terms of exponential functions instead of hy-
perbolics combined with exponentials. For R ! 1, or if
�R = 0, equation (7) is replaced by

f1(t) = �0K sin(
p
K=Mt)=

p
K=M (8)

which is an undamped oscillation in which f udcut =
1=(2�)(K=M)1=2 is the undamped natural frequency (and
cutoff frequency). The force starts at zero at the moment
the hammer hits the slab, and increases to a maximum, at
which point the hammer reaches its maximum depth, the
hammer then starting to return and the force decreasing.
As the force reaches the zero crossing at tcut = 1=(2fcut),
the hammer rebounds, takes off from the slab and is picked
up by a catching mechanism (an eccentric cam). Thus, the
force is zero after this moment,

f1(t) =

(
�0Kp
K=M

sin(
p
K=Mt); 0 < t < 1

2fcut

0; else:

The same conditions hold for the damped oscillations de-
scribed in (7). In the overcritical case the force will never
completely be zero. However, the force still decreases
rapidly after reaching the maximum and is approximately
zero at Tr. Each amplitude in the tonal spectrum of the
ISO tapping machine is given then by

Fn =
1

Tr

Z Tr�1

0

f1(t)e
�i2�nt=Trdt (9)
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in the case of overcritical damping, and by

Fn =
1

Tr

Z tcut

0

f1(t)e
�i2�nt=Trdt (10)

in the case of undercritical damping. These integrals can
be expressed in closed form, but are likewise well suited
for numerical integration. The Fourier transforms of a sin-
gle impact are given below, where the cutoff frequencies
are also determined. For the over-critical case, the inequal-
ity K=2R > 
oc holds, giving a Fourier transform over
time to angular frequency ! = 2�f of equation (7),

F1;oc = Ftff1(t)joc�(t)g
=

�0KM

K � !2M + i!KM=R
(11)

where �(t) is the unit step function. The low-frequency
asymptote of (11) is

F1;ocjf!0 = �0M

as expected. In the undercritical case, a Fourier transform
over time of equation (7) yields, taking into account the
time interval of interest

F1;uc = Ftff1(t)juc
�
�(t)� �(t� tcut)

�g
=

�0KM(1 + e�tcut(i!+K=2R))

K � !2M + i!KM=R
(12)

where

tcut = �=
uc = 1=2fcut

is the time of zero-crossing. The low-frequency asymptote
is

F1;ucjf!0 = �0M
�
1 + e�Ktcut=2R

�
which has two extremes depending on the resistance R,

F1;uc =

�
2�0M; f ! 0 and R!1
�0M; f ! 0 and R! 1

2

p
KM

which agrees with the asymptotes schematically derived
in section 2 on the basis of the mechanical impulse and
the change in momentum.

In both the overcritical and the undercritical case, the
Fourier series components are then found to be Fn =
F1(nfr)fr, and the complex cutoff angular frequency (i.e.
the poles) is

!cut = iK=2R�
p
K=M �K2=(2R)2 (13)

If the negative sign is chosen, the absolute value of the
complex cutoff angular frequency yields the point of in-
terest on the real axis,

j!cutj =
(

K
2R �

q
K2

(2R)2 � K
M ; KM � 4R2q

K
M ; KM < 4R2

(14)

The cutoff frequency then is

fcut = j!cutj=2�; (15a)

whereas in the undercritical case the undamped cutoff fre-
quency,

fudcut = 1=(2�)
p
K=M (15b)

is employed, this being the frequency at which the phase
equals ��=2.

3.2. Choice of the frequency independent stiffness and
resistance

In Figure 1 the impedance at the position where the ham-
mer hits the floor is represented by a spring and a dashpot
in series. Thus, a suitable stiffness K and a resistance R
need to be found in order to achieve an adequate approxi-
mation of what occurs at impact. The resilient part is often
the result of there being an elastic surface layer on an oth-
erwise bending stiff slab. The stiffness of the elastic layer
is then K = EAh=d, c.f. Vér [6], where E is Young’s
modulus, d is the thickness of the elastic layer, and Ah is
the area of the hammer. The resistance is then related to the
local dissipation, R = �(KM)1=2, � being the loss factor
for the material. In the lightweight floor structures consid-
ered in this paper, however, the hammer hits a rather thin
plate made of gypsum or of wooden material. It can thus
be assumed that the resilient part is due to local deforma-
tion of the plate, and the resistive part to energy transporta-
tion within the plate. As a first approximation, the stiffness
of the local deformation can be found, as in [10, 11], by

K = 2GDh=(1� �) = EDh=(1� �2) (16)

where G is the shear modulus, � is Poisson’s ratio and
Dh = 2(Ah=�)

1=2 is the diameter of the hammer. The lo-
cal stiffness here is found for a static deformation caused
by a rigid stamp on a semi-infinite elastic solid, the so-
called Bossinesq deformation. If the area of contact be-
tween the hammer and the floor can be regarded as involv-
ing contact between two elastic bodies of different radii, a
geometric non-linearity will occur, a so-called Hertz de-
formation [10]. The hammers of the tapping machine are
actually not entirely flat, but since after a few impacts the
material in the impact zone becomes somewhat plastically
deformed by the hammer it is assumed that the Hertz de-
formation effect will not be dominant in the steady-state
vibrational phase.

The resistance is taken to be the real driving-point
impedance of a thin plate,

R = 8
p
m00B; (17)

its being taken into account that energy is transported
away from the excitation point by bending wave motion.
Here m00 is the mass per unit area and B = EI 0 is the
bending stiffness of the plate.
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Figure 2. Time history of hammer impact. Solid line (—) denotes
the interrupted force, dashed line (- - -) denotes the oscillating force.
The parameters areK = f5 10 20 40 80g �106 N/m,R = 2 �103

Ns/m .

Both of these lumped parameters are frequency inde-
pendent, a necessary condition for the solution technique
described in section 3.1.

3.3. Numerical examples

Various numerical examples will be presented now to il-
lustrate certain features of the lumped two-parameter de-
scription of the impact force of the tapping machine. The
examples will come from a specific combination of R and
K, where R = 2 � 103 Ns/m and K = 4 � 106 N/m.
These values correspond roughly to an infinite 22 mm
thick wooden plate, use being made of equations (16) and
(17), respectively. The parameters are varied one at the
time.

In Figures 2 to 4 the stiffness is varied as K =
f5 10 20 40 80g � 106 N/m. Figure 2 shows the time
history of the impact force. The first three impact forces
are undercritical, as indicated by the dashed line (- - -),
since they should oscillate if uninterrupted. The increase
in stiffness results in a narrower pulse, and thus a some-
what broader frequency range, as can be seen in Figure
3.

Figure 3 shows the magnitude of the force spectrum,
as derived from equation (11) or (12). The undamped cut-
off frequency (15b) is indicated by circles (o) and the ac-
tual cutoff frequency (15a) by pluses (+). The extremes of
the low-frequency asymptotes are indicated by two stars
on the ordinata (�). The undercritical behaviour of the
first three pulses manifests itself as oscillation in the high-
frequency range. The overcritical force pulses are close to
the lower extreme of the low-frequency asymptotes.

The behaviour of the cutoff frequency when the stiff-
ness increases can be described as follows: The cutoff
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Figure 3. Hammer impact spectrum, showing magnitudes. The pa-
rameters are K = f5 10 20 40 80g � 106 N/m and R =

2 � 103Ns/m.
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Figure 4. Hammer impact spectrum, showing the phases. The pa-
rameters are K = f5 10 20 40 80g � 106 N/m and R = 2 � 103

Ns/m.

frequency increases with increasing stiffness up to the
point where critical damping occurs, whereK = 4R2=M .
Thereafter the cutoff frequency decreases as the stiffness
increases further. The undamped cutoff frequency always
increases with increasing stiffness.

Figure 4 shows the phase of the force spectrum. The
undamped cutoff frequency (15b) is marked by circles (o).
As a reference to the phases, the time of impact is taken,
giving a low-frequency asymptote of zero.
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Figure 5. Hammer impact time history. Solid line (—) denotes the
interrupted force, dashed line (- - -) denotes the oscillating force.
The parameters are R = f0:5 1 2 4 8g � 103 Ns/m and K =

40 � 106 N/m .
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Figure 6. Hammer impact spectrum: magnitudes. The parameters
are R = f0:5 1 2 4 8g � 103 Ns/m and K = 40 � 106 N/m.

In Figure 5 to 7 the resistance is varied as R =
f0:5 1 2 4 8g � 103 Ns/m. Figure 5 shows the time history
of the impact force. The two final impact forces are under-
critical. The dashed line (- - -) indicates how they would
have continued if uninterrupted. An increase in resistance
results in the pulse becoming narrower, and thus in the
frequency range becoming somewhat broader, as can be
seen in Figure 6. The undamped cutoff frequency remains
unchanged, however.
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Figure 7. Hammer impact spectrum: phases. The parameters are
R = f0:5 1 2 4 8g � 103 Ns/m and K = 40 � 106 N/m.

Figure 6 displays the magnitude of the force spectrum,
as derived from equation (11) or (12). The undamped cut-
off frequency (15b) is indicated by circles (o) and the ac-
tual cutoff frequency (15a) by pluses (+). The extremes of
the low-frequency asymptote are indicated by two stars on
the ordinata (�). The last spectrum (R = 8 � 103 Ns/m)
is not much affected by dissipation, the low-frequency
asymptote consequently having increased. For the over-
critical pulses, the spectrum starts to decrease at the actual
(lower) cutoff frequency, not at the undamped one.

Figure 7 shows the phase of the force spectrum in-
volved. The reference to the phases is taken at the time
of impact, giving a low-frequency asymptote of zero. The
undamped cutoff frequency (15b) is indicated by circles
(o).

To conclude: increasing the stiffness gives a lower
low-frequency asymptote and a higher cutoff frequency,
whereas increasing the resistance gives a higher low-
frequency asymptote and an unchanged undamped cutoff
frequency (15b) and a lower actual cutoff frequency (15a).

3.4. Floating floors, a discussion

A floating floor can be described with two infinite plates
connected by a resilient layer [4, 12]. To simplify the sit-
uation, it can be assumed that the plates are thin and that
the resilient layer is point-reacting and massless. To sim-
plify the situation still further, two different cases can be
distinguished such that in the first case the impedance of
the excited plate is so high that the impact situation is the
same as described in section 3.1–3.2, whereas in the sec-
ond case the impedance of the excited plate is so low that
the secondary (non-excited) plate can be regarded as rigid.
In this second case the plate system can be simplified to
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Figure 8. Modified impact description, impedanceZ = 1=Y .

a Winkler foundation, involving a plate resting on a lo-
cally reacting resilient layer. The bending wave-number is
k4B = (m00!2 � K)=B, where m00 is the mass per unit
area of the plate, K is the stiffness of the foundation and
B is the bending stiffness of the plate. The driving-point
mobility then is

Y =
!

�8B1=2i
p
K �m00!2

;

where the square-root in the denominator yield as a con-
sequence that no lumped model can be used, even for this
simple case. Thus, a more general description is needed.

4. Impact force and the general system

In section 3 the impact force spectrum was derived for
frequency-independent parameters K and R in a me-
chanical series. The spectrum was given explicit expres-
sions (11–12). However, the floor system cannot gener-
ally be described in terms of frequency-independent pa-
rameters. The lumped description of the driving-point
impedance/mobility is basically an ad hoc approximation
of the actual situation. A more accurate description would
be to calculate the driving-point mobility from the system
description. The driving-point mobility is defined as the
complex ratio of velocity to applied force, where the ve-
locity is measured at the point of application of the force,
c.f. [13].

Since the methods employed in section 3 cannot be used
for frequency-dependent mobility, however, an approach
to finding the force spectrum for an arbitrary driving-point
mobility needs to be found. A suitable approach is to solve
the differential equations in the frequency domain, inverse
transform the result obtained in order to find the time of
rebound, and to then transform the remaining force into
the frequency range.

4.1. The interaction between the hammer and the floor

Figure 8 shows the generalised impact situation and the
procedure employed. Figure 8 a) presents a general model
of the impact. The hammer, of mass M , strikes the floor
with the velocity �0. The floor can be described in terms of
the general driving-point mobility Y (or impedance Z =
1=Y ). The desired force, f1(t), is shown in Figure 8 b).

The mobility is frequency-dependent, implying that the
equations of motion can easily be solved in the frequency
domain. On the other hand, the impact history is inter-
rupted after the first zero crossing of the force. Thus the
system is not time-invariant and therefore is best treated
in the time domain. To deal with this problem, consider
Figure 8 c), in which the mass M is now fixed on top of
the impedance Z. The entire system is driven by a force
F0Æ(t). This modified form of the problem is both linear
and time-invariant. The equation of motion and the floor
reaction force, if taken in the frequency domain, are

F0 � F 01 = i!Mv; F 01 = v=Y; (18)

where v = Ftf�(t)g is the velocity spectrum of the floor
and F 01 is the spectrum of the continuing impact force,
i.e. the floor reaction force between the mass and the
impedance, as shown in Figure 8 c-d), F 01 = Ftff 01(t)g.
One solves then for F 01 and v,

F 01 = F0=(1 + i!MY ); (19a)

v = Y F 01: (19b)

The magnitude of the force F0 needs to be selected so that
the velocity at t = 0+ equals the velocity of the falling
hammer. At t = 0� the velocity should be zero,

�(0+) = �0; �(0�) = 0: (20)

In evaluating �(0), however, account needs to be taken of
the fact that the Dirac Æ(t) that excites the floor at time t =
0 is only at half inside the infinitesimal region from t = 0
to t = 0+. This is compensated for if a value halfway
between �(0+) and �(0�) is employed,

�(0)jDirac = �0=2: (21)

The velocity of the floor at t = 0 is evaluated as the inte-
gral over all the frequencies,

�(0) =
1

2�

Z
1

�1

v(!)d!

=
F0
2�

Z
1

�1

d!

i!M + 1=Y (!)
� F0I0; (22)

where equation (19b) is used in next-to-the-last equality,
and the last equality is the definition of the integral I0.
One then inserts (21) in (22) to obtain the magnitude of
the driving force in the modified system,

F0 = �0=2I0; (23)
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where the integral I0 (mostly) needs to be calculated nu-
merically. Equation (19a) then becomes

F 01 =
�0=2I0

1 + i!MY (!)
: (24)

The time history of this force can be found by means of
the inverse Fourier transform, f 01(t) = F�1t fF 01g, imple-
mented numerically as a fast digital inverse transform. The
moment in time of the first zero crossing of the force is ob-
tained then as

tcut = minftjt > 0; f 01(t) = 0g: (25)

The actual, interrupted, excitation impact force then is

f1(t) = f 01(t)�(tcut � t); (26)

the corresponding force spectrum being found by means
of a Fourier transform F1 = Ftff1(t)g, implemented nu-
merically as a fast digital transform. The Fourier series
components of (4) are Fn = F1(nfr)fr, where fr = 1=Tr
is the repetition frequency of the tapping machine.

4.2. The driving-point mobility

In the lumped system description presented in section 3,
which made use of frequency-independent components,
both the stiffness and the resistance were important for the
solution. For a general mobility, this implies that both the
real and the imaginary part of the mobility are important.

For an infinite homogenous plate, the imaginary part
of the mobility, or the finite stiffness, can only be due to
local effects. In section 3, the stiffness was chosen to be
the stiffness due to deformation near the impact zone on a
semi-infinite elastic solid, the Bossinesq expression (16).
It would be more realistic to determine the local stiffness
of a plate of finite thickness, i.e. to treat the plate as an
elastic continuum. The force excites the plate asymmetri-
cally on its upper surface. Thus, the excitation force pro-
duces a complicated displacement field under and near the
point of excitation.

However, the description of the elastic continuum has
too high a level of complexity to be appropriate for the en-
tire system, including the reinforcing beams, for example.
To this end, it is better to use thin plate theory, assuming
plane sections to remain plane in the plate, which implies
the excitation force to be constrained to produce a uni-
form displacement field in the thickness direction. Thus,
no local deformation can be attained in terms of thin plate
theory.

A heuristic description of the driving-point mobility
could be to combine the mobility as determined for the
global system, YG, with the mobility as determined for
the detailed description near the excitation point, YL. Note
that both YG and YL are in general complex. The parts of
the mobilities that overlap need to be subtracted, i.e. the
mobility of an infinitely thin plate. The total mobility is
expressed as a correction of the global mobility,

Y = YG +4Y; 4Y = YL � 1=8
p
m00B; (27)

where m00 is the mass per unit area and B is the bending
stiffness of the excited plate. This is quite an elaborate de-
scription of the driving-point mobility. The mobilities YL
and YG need to be determined then.

One can also use measured mobilities as an alternative
to the theoretically derived mobilities, provided the fre-
quency resolution is sufficiently high.

4.3. Local effects on the mobility

The mobility YL due to local effects needs to be deter-
mined, the global parts of the system being excluded. The
mobility of a plate of finite thickness and infinite extent ex-
cited on its upper surface by an indenter, is described in the
literature. The indenter is assumed to be circular, weight-
less and stiff as compared with the plate, and to be small as
compared with the wavelengths of the bending and quasi-
longitudinal waves of the plate. A rigid indenter, such as
the case of a metal hammer acting on a wooden or a gyp-
sum plate, can be assumed to provide a better approxi-
mation of the actual situation than a soft indenter would.
Use of a rigid indenter is also more reasonable than use
of a soft one (assuming the pressure distribution to be uni-
form), since it allows the pressure distribution under the
indenter to change as the frequency increases.

In all analyses describing the motion of ’thin’ struc-
tures, such as in the Kirchoff and the Mindlin theories, it
is assumed that the two sides of the structure have exactly
the same displacement at each point. This is an approxi-
mation, and both additional weakness and inertia effects
can occur. Thus, simplified ’thin’ theories are not suffi-
cient for the case at hand.

More detailed three-dimensional analyses have been
carried out, such as by Ljunggren [14] for a rigid indenter
and by Heckl [15] for a soft indenter. Petersson and Heckl
[11] have investigated the influence of different choices of
pressure distribution. The boundary value problem is sim-
pler mathematically in the case of a soft indenter than of
a rigid one. Therefore, by assuming a pressure distribu-
tion under the indenter, Ljunggren [14], and Petersson and
Heckl [11] (when dealing with a rigid indenter) avoided
the problems a rigid indenter involves. The pressure distri-
bution taken was that of a rigid indenter statically loading
an elastic semi-infinity. Since there is no guarantee that
this assumption actually results in a uniform displacement
under the indenter, such a case can be designated as quasi-
rigid.

In a paper by the authors [16], the pressure distribution
at the interface between the indenter and the plate was de-
termined by use of a variational formulation. The expres-
sions obtained are approximations, although the choice of
these is an optimal one. The mobility described in [16] is
written as

YL =
1

2�R2

IaIc � I2b
Ic � Ib + Ia=4

(28)
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where

Ia =

Z
1

0

sin2(Rkr)

kr
A(kr)dkr ; (29)

Ib =

Z
1

0

J1(krR) sin(Rkr)

kr
A(kr)dkr ; (30)

Ic =

Z
1

0

J21(krR)

kr
A(kr)dkr; (31)

and where A(kr) is the admittance, used in all the refer-
ences [11, 14, 15, 16].

It should be pointed out that only the imaginary part of
YL can be said to be due to local deformation, the real part
being due to the rest of the system as well, and it is in a
broad frequency range close to 1=8

p
m00B.

4.4. Global effects on the mobility

The mobility YG due to global considerations needs to
be determined, local effects near the excitation zone be-
ing excluded. Both the real and the imaginary parts of the
driving-point mobility of the floor structure may be due
to global effects. An infinite thin plate has a real mobil-
ity, whereas in a finite plate, if no damping is included,
the mobility is entirely imaginary. Thus, an infinite plate
has only a resistance part in the mobility, whereas a fi-
nite plate has only stiffness and mass parts in the mobil-
ity. In lightweight floors consisting of plates reinforced
by beams, the mobility has an imaginary part, also in the
case of infinite systems. In [2], a typical lightweight floor
system is described by use of a spatial Fourier transform
method. The driving-point mobility due to global effects
can be derived using the same strategy.

Assume that the transformed displacement field is
found in a way similar to that presented in [2]. The
driving-point displacement can be found then by means of
a double inverse Fourier transform in spatial coordinates,

w(x0; y0) =
1

4�

ZZ
1

�1

~w(�; �)e�i(x0�+y0�)d�d�; (32)

where w is the displacement field of the excited plate, ~w is
the spatially transformed displacement field, x0 and y0 are
the coordinates of excitation, and � and � are the trans-
form wavenumbers. An account of how to simplify and
reduce the integrals in (32) to be suited for numerical in-
tegration is presented in the Appendix. A simplified floor
system is also described there.

The driving-point mobility due to global considerations
is defined as

YG = v(x0; y0)=F1 = i!w(x0; y0)=F1 (33)

How the driving-point mobility is determined is not cru-
cial, however, for the methods in section 4.1. One can use
modal sums, FEM or any other deterministic method, as
long as the frequency resolution is sufficiently high.

Define input

parameters

Calculate magnitude

of the Dirac

Calculate spectrum of

the continuing force

Numerical inverse

transform

Find first zero crossing,

let the force be zero for t>t
cut

Numerical transform to

give force spectrum

Figure 9. Flow chart for calculation of the force spectrum.

5. Numerical evaluation and programming

Since the impact force description of the general driving-
point mobility is not given in the form of a closed expres-
sion, program coding is an important part of describing
the excitation. Certain important aspects of the program
developed will be taken up and be shown in a flowchart
(Figure 9).

The program starts by defining the input parameters, in-
cluding that the driving-point mobility Y is to be deter-
mined. Equations (28–31) are used for the local part of the
mobility. The global part of the mobility can be integrated
from equations (32–33), see also the Appendix. In the nu-
merical example to be taken up, an adaptive and recursive
Newton-Cotes eight-panel integration scheme, the Matlab
function quad8 [17], was used in the numerical evalua-
tion. In order to speed up the calculations, a frequency res-
olution of 10 Hz was employed, and the frequency range
being 10 Hz to 6000 Hz. The numerical ’signal theoretic’
methods described in section 4.1 are in need of a better
frequency resolution and of a broader frequency range,
as will soon be evident. The narrower frequency range is
achieved using a spline interpolation, and the extended fre-
quency range is achieved by using the asymptotic mobil-
ities of an infinite plate for excitation positions between
beams, and of an infinite beam for excitation positions at
the beams.

The magnitude of the Dirac shown in Figure 8 c needs
to be calculated then, by use of (22) and (23). The spec-
trum of the continuing force is calculated then from (24)
and numerically inverse transformed by use of the IFFT
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algorithm. It is important that the frequency resolution is
sufficient to describe the pulse peak and detect the first
zero-crossing correctly.

As an example, consider the lumped model with R =
2 � 103; and K = 2 � 107, use of (14) showing that tcut =
8:112 � 10�4 s. An appropriate time resolution might then
be > 20 points for describing the force pulse. Thus, the
time resolution should be 4t < 4:06 � 10�5 s, giving an
upper frequency limit of fnyq > 12:3�103 Hz (the Nyquist
frequency). If a frequency resolution of 4f = 2 Hz is
employed, an FFT/IFFT of 16384 points is needed.

In the numerical example to be presented, the resolution
data chosen were; 4t = 8:33 � 10�6 s, 4f = 3:66 Hz
and fnyq = 60 � 103 Hz, a 16384-points FFT/IFFT being
employed. Since the impact noise is often only of interest
up to 5000 Hz a low-pass filter of 10 � 103 Hz was used, to
prevent high-frequency terms from influencing the force
spectrum.

The first zero-crossing needs to be found then, so
that the actual, interrupted impact force was determined
from (26). The zero-crossing was found by examining the
change of sign. The exact position could not be determined
since the time resolution is fixed. The force spectrum was
calculated then by use of the fast digital Fourier transform
FFT, the same resolution data as before being employed.

Due to the material models and numerical procedures
there will be some causality problems in the procedure.
If the force is non-zero before and at the time of impact
t = 0 it clearly violating the causality rules. This not only
produces a wrong result, but also complicates the numer-
ical treatment since sometimes more than one zero cross-
ing may need to be found. However, when the time and
frequency resolution are good and the damping is slight,
problems of this sort are held to a minimum, its being as-
sumed in such cases that the errors involved can be disre-
garded.

6. Numerical results and discussion

A numerical example will be given to illustrate the ex-
citation force description when a frequency dependent
driving-point mobility is employed. One plate reinforced
by one set of periodically spaced beams, as described in
the Appendix, is used instead of the complete floor struc-
ture, so as to simplify the calculations.

The following data were used in the numerical calcula-
tions: distance between beams l = 0:6 m, modulus of the
plates Ep=(1 � �2) = 7:2 � 109 Pa, Young’s modulus for
the framing beamsEf = 9:8�109 Pa, density of the beams
and plates �p = �f = 500 kg=m

3, thickness of the plates
h = 22 � 10�3 m, and material damping � = 0:03. The
beams are 0.220 m in height and 0.067 m in width.

The magnitude of the driving-point mobility is shown
in Figure 10, calculated there for 15 positions. These
are the global mobilities. The excitation co-ordinates are
x0 = f0 0:012 0:053 0:084 0:101 0:122 0:150 0:175
0:205 0:213 0:220 0:232 0:255 0:291 0:3gm (chosen ran-
domly) and y0 = 0 m. These mobilities are used as input
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Figure 10. Global driving-point mobility at 15 positions, solid line
(—). Driving-point mobility for an infinite plane, dashed line (- - -).
Driving-point mobility for an infinite beam, dashed-dotted line (- �
-).
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Figure 11. Force spectrum, calculated according to sections 4 and 5.
Mobility is taken as the global one, see section 4.4, no local weak-
ness are present.

data in calculating the impact force. The asymptotic mo-
bilities for an infinite plate (� � �) and for an infinite beam
(-�-) are also shown in the figure.

The force spectrum resulting from the mobilities con-
tained in Figure 10, without consideration of local effects,
is shown in Figure 11. The points of excitation are clearly
important, since these differ both in the low-frequency
asymptote and at the cutoff frequency. The extremes of
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Figure 12. Force spectrum, calculated according to 4 and 5. Mobility
taken as the global one in section 4.4, but with local weakness added
in accordance with section 4.3.

the low-frequency asymptotes are indicated by one star
(�) and one circle (Æ) on the ordinata. One of the curves
fall outside the extremes, implying the numerical proce-
dures to not be perfect. The errors, however, are minor,
the important features being clearly illustrated. It should
be pointed out that for this case there are no problems con-
cerning causality.

In Figure 12 the local mobility has been added to the
global mobility, in accordance with equation (27), the
force spectrum being calculated then. Local effects are
also important; the corresponding excitation points in Fig-
ures 11 and 12 differ both in the asymptote and in the cut-
off frequency. The cutoff frequency and the low-frequency
asymptote are consisting less in Figure 12.

7. Summary and conclusions

Findings concerning the excitation force achieved by
the ISO tapping machine, as reported in the literature,
have been summarised and reconsidered. A two-parameter
lumped model of impact developed by Lindblad [5],
was analysed. The model can only deal with frequency-
independent parameters. Low-frequency asymptotes and
cutoff frequencies were derived. The low-frequency
asymptotes were found to have a span of 6 dB. The
lumped parameters were taken as the local stiffness and
the driving-point mobility of an infinite plate. On the basis
of a numerical parametric study, it was concluded that in-
creasing the stiffness gives a lower low-frequency asymp-
tote and a higher cutoff frequency, and that increasing the
resistance gives a higher low-frequency asymptote, as well
as an unchanged undamped cutoff frequency and a lower
actual cutoff frequency.

A description of impact force applicable to general,
frequency-dependent impedances and mobilities was de-
rived. The general force description was implemented by
means of numerical integration and FFT. The mobilities
may be due to local effects, to the use of thick plate theory,
and/or global effects, obtained using spatial Fourier trans-
form methods and numerical integration. From a numeri-
cal example it was concluded that both the local and the
global effects are important in determining the excitation
force of the ISO tapping machine on a non-homogenous
lightweight floor. In order to adequately describe what oc-
curs, the global and the local driving-point mobility has
to be used and combined. The results also indicate how
important it is to use an accurate and detailed system de-
scription in order to predict the impact force spectrum ap-
propriate. The force spectrum needs to be determined on
the basis of the entire driving-point mobility, that is both
the real and the imaginary parts.
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Appendix

The driving-point mobility is needed for determining the
force spectrum of the tapping machine. A simplified sys-
tem for performing the calculations is considered, one tak-
ing account of the upper plate and the beams. Moreover,
the fluid reaction is not taken into account. The simplifi-
cation and the reductions of the number of integrals to be
evaluated are inspired by Mace [18, 19]. The transformed
displacement used in this system, discussed by Evseev
[20] and Mace [21] and also in [2], can be written as

~w(�; �) =
FRe

i(�x0+�y0)

S(�; �)

� Pa(�; �)G(�)=l

S(�; �)(1 + Pb(�; �)G(�)=l)
; (A1)

where

S(�; �) = D
�
(�2 + �2)2 � �4

�
; (A2)

G(�) = Ef If�
4 � �fAf!

2; (A3)

are the transformed plate and beam operators, respectively,
D is the bending stiffness of the plate, � the bending wave
number,Ef If the bending stiffness of the beam and �fAf
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the mass per unit length of the beam. The two help func-
tions Pa and Pb are

Pa(�; �) =
FRe

i�y0

D

1X
n=�1

ei(��en)x0�
(�� en)2 + �2

�2 � �4
;(A4)

Pb(�; �) =
1

D

1X
n=�1

1�
(�� en)2 + �2

�2 � �4
; (A5)

where, as before, e = 2�=l and � is the bending wave
number. The fluid reaction is not included in equations
(A2–A5) .

The inverse transform w(x; y) = F�1x;yf ~w(�; �)g is de-
fined in [2], equation (2 b). The half-way transform, trans-
formed in the y�� direction or inverse transformed in the
x�� direction, is denoted �w(x; �) = F�1x f ~w(�; �)g =
Fyfw(x; y)g.

Define a function � for the sums in (A4–A5),

�(�; �;x0) =
1X

n=�1

ei(��en)x0�
(�� en)2 + �2

�2 � �4
: (A6)

Thus, equations (A4) and (A5) can be expressed in terms
of �,

Pa(�; �) = FRe
i�y0�(�; �;x0)=D;

Pb(�; �) = �(�; �; 0)=D:

The function � can be given explicitly using the Pois-
son’s sum formula, contour integration and a geometric
series expression, a method described in Mace [18, 19].
After considerable manipulations, equation (A6) can be
expressed as

� 4�2

l
�(�; �;x0)

=
ie�ix0q�=q�
1� e�il(�+q�)

� ieix0q�=q�
1� e�il(��q�)

+
e�x0q+=q+

1� e�l(i�+q+)
� ex0q+=q+

1� e�l(i��q+)
(A7)

for 0 < x0 < l, and where q+ =
p
�2 + �2 and

q� =
p
�2 � �2 . For other positions of x0, the periodic-

ity of the structure can be used to translate the co-ordinates
so that the inequality is fulfilled. However, the sum in (A6)
converges rapidly (due to the fourth-order expression in
the nominator) making it possible to use a truncated sum
instead of the explicit expression (A7). When the fluid re-
action is included, a truncated sum needs to be employed.

The integrals in the inverse transform is now to be eval-
uated,

�w(x; �) =
1

2�

Z
1

�1

FRe
i(�x0+�y0)

S(�; �)
e�i�xd�

� 1

2�

Z
1

�1

Pa(�; �)G(�)l
�1e�i�x

S(�; �)
�
1 + Pb(�; �)G(�)=l

�d�
= I1 � I2; (A8)

where the integrals I1 and I2 are defined. The second in-
tegral in (A8) is

I2 =
G(�)FRe

i�y0

2�lD

�
Z
1

�1

�(�; �;x0)e
�i�xd�

S(�; �)
�
1 + �(�; �; 0)G(�)=lD

� (A9)

In order to simplify the integration, subdivide the infinite
integral I2 into an infinite sum of finite integrals,

Z
1

�1

� d� =

1X
n=�1

Z (2n+1)�=l

(2n�1)�=l

� d� (A10)

Making use of the periodic behaviour of the infinite sums
yields

�(�; �;x0) = �(�+ 2n�=l; �;x0):

A variable substitution �0 = � � 2n�=l and a change of
order between the sum and the integral, allow (A9) to be
written as

I2 =
G(�)FRe

i�y0

2�lD

�
Z �=l

��=l

1X
n=�1

e�i(�+en)x

S(�0+en;�)�(�
0; �;x0)d�

0

1 + �(�0; �; 0)G(�)=lD
(A11)

The sum in (A11) is identified as

1X
n=�1

e�i(�+en)x

S(�0 + en; �)
= �(��0; �;x)=D:

Thus, I2 becomes a finite integral,

I2 =
G(�)FRe

i�y0

2�lD

�
Z �=l

��=l

�(��0; �;x)�(�0; �;x0)d�0
1 + �(�0; �; 0)G(�)=lD

(A12)

Since the driving-point mobility is to be evaluated, x =
x0. Utilising this and the fact that � is symmetric in a if
x = 0, �(�; �; 0) = �(��; �; 0), can be used to reduce
the integral to

I2 =
G(�)FRe

i�y0

�lD

�
Z �=l

0

�(��0; �;x)�(�0; �;x0)d�0
1 + �(�0; �; 0)G(�)=lD

(A13)

The first integral in (A8) is

I1 =
FRe

i�y0

2�

Z
1

�1

d�

S(�; �)
(A14)

After use of (A10), variable substitution and change of or-
der between the sum and the integral and identifying �, I 1
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can be written as a finite integral. The negative side can be
reduced using the symmetry of � in �, yielding

I1 =
FRe

i�y0

�

Z �=l

0

�(�0; �; 0)d�0 (A15)

The integral in the �-direction is now to be evaluated.
The complete inverse transform is written as

w(x0; y0) =
1

2�

Z
1

�1

I1(�)e
�i�y0d�

� 1

2�

Z
1

�1

I2(�)e
�i�y0d� = J1 � J2: (A16)

where the integrals J1 and J2 are defined. The second term
is

J2 =
FR

2�2lD

�
Z
1

�1

G(�)

Z �=l

0

�(��; �;x)�(�; �;x0)d�d�
1 + �(�; �; 0)G(�)=lD

: (A17)

The symmetry of the functions �(�;��;x0) =
�(�; �;x0) and G(��) = G(�) can be used to reduce
the integral to

J2 =
FR
�2lD

�
Z
1

0

G(�)

Z �=l

0

�(��; �;x)�(�; �;x0)d�d�
1 + �(�; �; 0)G(�)=lD

: (A18)

The first integral J1 can be shown to be

J1 =
FR
4�2

Z Z
1

�1

S�1d�d� =
FR

i!8
p
m00D

:

It is better numerically, however, to evaluate this integral
in the same way as J2. Thus, if the symmetry is used

J1 =
FR
�2

Z
1

0

Z �=l

0

�(�; �; 0)d�d�: (A19)

Summing up (A18) and (A19), the inverse transform
(A16) can now be written as

w(x0; y0) =
FR
�2

Z
1

0

Z �=l

0

�(�; �; 0)

� �(�; �;x0)�(��; �;x0)G(�)
lD +�(�; �; 0)G(�)

d�d�;(A20)

where (A20) is to be evaluated numerically. The driving-
point mobility is found by using the results presented in
sections 4.2 to 4.4.
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Summary
Lightweight floors are often troubled by poor impact-sound insulation. In order to develop and explain structures with
acceptable insulation, a deterministic prediction model was developed. The paper considers transmission through the
system and the response of the model. Excitation (as caused by the ISO-tapping machine) is considered in a separate
paper [1]. The system description employs a spatial transform technique, making use of the periodicity of the floor
structure with the aid of Poisson’s sum rule. The radiated power is calculated using numerical integration in the wave-
number domain, the radiated power enabling the impact sound level to be calculated. Comparisons are made between
measurements found in the literature and the proposed prediction model, the effects of different excitation models being
discussed. A relatively close agreement is achieved, especially if an elaborate excitation model is employed.

PACS no. 43.55.Rg, 43.40.Kd, 43.40.Dx

1. Introduction

Interest in lightweight building techniques has increased
in recent years, partly because of the possibility this pro-
vides of lowering house production costs. However, it is
also well-known that structures of this type have poor
impact-sound insulation. The demand for more adequate
sound insulation has led to the development of lightweight
floor structures with better impact-sound-insulation char-
acteristics [2], although the production cost involved are
still rather high. A prediction model sensitive to changes
in system details is an important tool for developing and
analysing structures with an acceptable degree of sound
insulation. Such a model can consist of a chain of three
parts: excitation – system – response. Point impact exci-
tation, which can be achieved by use of the standard tap-
ping machine, is dealt with in [1], including interaction
between the hammer and the floor. The present paper fo-
cus instead on the latter two parts in the chain: the system
and the response. The system is the actual floor structure,
assumed to be linear, with the possible exception of its in-
teraction with the hammer [3]. Thus, linear theory will be
used in the theoretical model of the system. The response
is the sound pressure in the receiver room, which is related
to the radiated power.

1.1. The excitation

The ISO standard tapping machine [4] is used as an ex-
citation source in rating the impact sound level of a floor
structure. Although the machine does not simulate a real
footstep, the test results provide valuable information on
the dynamic behaviour of the floor. The impact noise
level caused by a tapping machine, together with expres-
sions for the force-spectrum, have been derived for high-
impedance homogenous structures by Cremer et al. [5],
and Vér [6]. The improvement obtained by use of an

elastic surface layer (floor covering) and floating floors
on high impedance surfaces has been the main focus of
studies in this area, such as that of Lindblad [3], which
deals specifically with the force- and velocity-spectrum
of the impacting hammer. In the present paper, in con-
trast, the floor generally functions as a low-impedance sys-
tem. The force spectrum of such a system and of systems
with arbitrary frequency-dependent driving-point mobili-
ties is dealt with in [1], the results of which are used in the
present paper.

1.2. The floor system

In designing lightweight floor structures with respect to
impact noise, various system parameters can be impor-
tant. The structure consists of different construction ele-
ments differing in weight, stiffness and damping. A suit-
able mathematical model is needed to take these parame-
ters into account. A mathematical model for point-excited
sound transmission through an ordinary lightweight floor
structure has been presented by the authors in [7, 8], and
will also be described in a forthcoming paper. The present
paper concerns a somewhat simplified situation, in which
two infinite plates are connected rigidly in the transverse
direction but are free to rotate (lack moment coupling, viz.
pin joints) on the framing beams. Thus, no resilient device
is employed. In the present case, the system is entirely infi-
nite, no type of boundary conditions being present (except
the plate frame coupling).

The main structure to be studied consists of two paral-
lel plates, reinforced by Euler beams, which aslo connects
them. The beams are spaced at equal distances, a method
utilising this periodicity being employed. The coupling
between the plates has two main paths: via the cavity and
via the rigid connections at the points of contact between
the beams and the plates. A similar solution is given by
Lin and Garrelick [9], for a case in which the excitation
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is a convected harmonic pressure and the beams are rigid
bodies. An extension of the present paper in contrast to
[9] is thus the use of reinforcing Euler beams and of point
excitation. A further extension in the present paper is the
inclusion of a Delaney-Bazely porous material in the cav-
ity, which can be either full or partly filled.

The prediction models for impact noise found in the
literature are based on power flow, SEA and/or semi-
empirical theory. The idea of utilising energy average to
develop details of the floor structure is likely to fail, how-
ever, due to the omission of crucial parameters. There is a
lack of detailed information due to the fact that the aver-
aging process is occurring at an early stage – within SEA
theory itself, before the model is fixed. At low frequen-
cies when few modes are present, SEA also provides too
rough an estimate of the acoustic response, and is thus
likely to fail within the low-frequency region that is im-
portant in impact sound insulation. In addition, an SEA
model fails to predict certain important details such as
global resonance and the effects of periodicity. Although
simplified models for impact noise isolation exist, these
have been developed for heavy floors, e.g. of concrete,
and make use of average energy assumptions. Vér [6] em-
ployes such an approach, using a force description of the
tapping machine on a hard surface, together with the en-
ergy balances, to obtain the impact sound level for bare
concrete floors. Through taking account of the effects of
an elastic layer (linear theory) and of isolation by float-
ing floors, the model is improved then. In the last section
of his paper, formulas are provided that can be applied
to simple cases of lightweight floor structures. Gerretsen
[10] also deals with impact noise isolation, using a gen-
eral model including airborne and flanking transmission,
an approach similar to [6] in the sense that reciprocal re-
lations and energy averaging are used. In [10], theory per-
tinent to homogenous, single leaf structures has been ap-
plied to describe the input mobility and impact isolation
for periodical floor systems.

In the present paper a spatial Fourier transform ap-
proach is employed rather than any of the methods just
refereed to, since such an approach has certain advantages.
The theoretical model to be used needs to be able to read-
ily handle sound radiation, as well as point forces in a two-
dimensional sense, and non-homogenous ’system floors’.
Lightweight floor structures consist of plates reinforced
by beam stiffeners spaced at equal intervals. If this peri-
odicity is taken into account, the reduction in redundant
information makes the solution simpler. All these matters
can be handled by the spatial Fourier transform technique.

This technique has been applied to the problem of sound
radiation from periodically stiffened plates, and its use
there has been developed over a long period of time.
Evseev [11] utilises the periodicity in an infinite plate with
periodic reinforcements of beams through use of spatial
Fourier transforms in two dimensions, the plate in ques-
tion being subjected to the action of a time-harmonic driv-
ing force. The boundary conditions between the plate and
the supports are applied in wavenumber space, the stiffen-
ers responding to the plate with only normal forces. The

solution was derived with the aid of Poisson’s sum and
other sum-operations – involving the fact that adding an
integer to the argument of a function that is being summed
from minus infinity to infinity does not contribute to the
sum. Rumerman [12] dealt with a similar problem, but in-
cluded the effects of the line moments produced by the
beams. The approach taken was not the same as Evseev,
as the boundary conditions between the plate and the sup-
ports was applied after the inverse transform were applied,
and making use of the Floquéts principle. Lin and Gar-
relick [9] investigated the transmission of a plane wave
through two infinite parallel plates connected by periodi-
cal frames that behaved as rigid bodies. A fluid coupling
in the cavity between the plates was also taken into ac-
count. The two systems were solved simultaneously by
use of Fourier transform techniques and a matrix nota-
tion, following Evseevs approach. Mace [13] considered
a plate reinforced by two sets of stiffernes and loaded
on one side by a fluid. He used the same approach as
Evseev and derived expressions for the far-field pressure
that results from a point excitation. The far-field pressure
was determined by a stationary-phase approximation. In
[14, 15, 16, 17] Mace instead made use of the approach
used by Rumerman. In [14] Mace obtained an expres-
sion for the plate displacement in the space-harmonic form
caused by a convected harmonic pressure. In [15] Mace in-
vestigated the sound radiated by a stiffened plate excited
by either a sinusoidal line force parallel to the stiffeners or
a point force at an arbitrary location. The result in [14] was
used as a starting point, integrating the responses caused
by spatially harmonic sources. The work with periodical
structures whas continued in [16, 17], deling with period-
icity in two orthogonal directions. Although the Rumer-
man approach – applying boundary conditions when the
inverse transform is taken and using Floquéts principle –
has its advantages, the Evseevs approach – that of taking
the boundary conditions in the transformed space – fulfills
the present purposes to the extent that the far-field pres-
sure and the radiated power can be derived in the trans-
formed space, making an inverse transform unnecessary.
Takahashi [18] considered noise control in buildings with
double-plate walls. Each structure examined consisted of
two parallel plates of infinite extent with various connec-
tors. The connectors were either point connectors or rib-
stiffeners. The structures were driven by point forces, the
resulting sound radiation being studied. Takahashi follows
the Evseev approach, using a Fourier transform model and
dealing with the periodicity by means of Poisson’s sum
formula. More resent contributions on the topic of peri-
odic double plate systems are presented by Skelton [19]
and Urusovskii [20].

An extended survey of the literature on the theoretical
models available is to be found in [21].

1.3. The response and the possibility of comparison

The radiated power can be found by integral methods in
the transformed (wave number) domain [5, pp. 526–537].
The response of the receiver room can be found on the
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basis of the radiated power, a diffuse sound field being
assumed, a power balance then being applied. This is an
ordinary room-acoustic approach as employed by Cremer
and Heckl [5, pp. 551–554], Vér [6] and Gerretsen [10],
and also used in this paper. A method of predicting the
impact sound level for a specific type of floor structure
can be found by combining the expressions arrived at for
the excitation and for the system as this relate to of the
response. Comparisons with measured data can then indi-
cate whether the prediction model is sufficiently accurate.
Measurement of the type of floor structure considered can
be found in the literature. Bodlund [22] investigated the
sound insulation in old wooden floor constructions, in-
cluding impact noise. In the report, laboratory measure-
ments of very simple wooden floor structures are included,
measurements that are suitable for comparison with result
of the present prediction model.

1.4. Summary of the approach and conclusion of the
introduction

The approach to be taken will be summarised here. The
excitation force caused by the ISO-tapping machine when
applied to lightweight floors was derived in [1]. The floor
structure examined, consisting of two plates – rigidly con-
nected and stiffened by beams – is described by its gov-
erning equations. A periodical description of the structure
is used. The coupled plate equations obtained are Fourier
transformed and solved for the transformed deformation.
The radiated power is obtained by use of integral methods,
using the transformed displacement. The impact sound
level is calculated from the radiated power, there being as-
sumed to be a diffuse sound field in the receiver room. The
paper is organised as follows: first, the theoretical model
of the floor structure is derived in two sections, followed
by a short section on sound radiation and the response.
The results obtained then are presented as numerical cal-
culations, which are compared with measured results, the
findings obtained being discussed in the section thereafter,
the paper concluding with a summary and final remarks.

2. The system; a theoretical model of the floor

2.1. Description

Consider a system of two coupled parallel plates infinite
in their extent, separated by a cavity of depth d, through
which they are coupled. The plates are also coupled by
rigid mechanical connections consisting of an infinite pe-
riodic array of connection lines of beams. The plates are
modelled as classic thin plates (Kirchhoff theory). An ex-
citation pressure acts on the upper plate, plate 1. Later on,
the general pressure is specified as a point force. Reaction
forces from two periodic arrays of discontinuities in the
form of beam stiffeners, and also from the surroundings
and from fluids in the cavity are present. The fluids sat-
isfy the ordinary acoustic wave equation. The structural
configuration that is modelled is shown in Figure 1. The
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Figure 1. Floor system and co-ordinates.
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Figure 2. Model for the equation of motion.

formulation employed is mainly due to Lin and Garrelick
[9], but also to Mace [13]. Lin and Garrelick is providing
the matrix formulation of the coupled problem, but the de-
scription of the beams and certain of the notations are the
same as Mace uses. A similar formulation can be found in
Takahashi [18]. The use of operator notations and the pres-
ence of mineral wool in the cavity is novel for the present
approach, as well as the use of an elaborate description of
the excitation force.

Not every parameter of possible importance in the real
floor structure can be taken into account in a theoretical
model, in the present model such parameters as moment
coupling, orthotropic plates, boundaries, plate bending in
the beams and structural waves in the porous material be-
ing ignored. The plates and the beams are assumed to
be infinitesimally thin in terms of the geometry involved.
Also, only radiation from an infinite area is considered.

2.2. The governing equations

As shown in Figure 2, the first plate is excited by the pres-
sure pe(x; y)ei!t and is reinforced by parallel beams at a
spacing of l. The time variation ei!t will henceforth be
suppressed throughout. The cartesian coordinates and the
beam spacing are defined in Figure 1.
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The equations to be solved can be written as

D1

�
@2

@x2
+

@2

@y2

�2

w1 �m00
1!

2w1 = pe+pr�pf1�pc (1)

D2

�
@2

@x2
+

@2

@y2

�2

w2 �m00
2!

2w2 = pc�pt+pf2 (2)

The displacement of the plates in the positive z-direction,
w1(x; y) and w2(x; y), satisfies equations (1) and (2) re-
spectively. Both equations are solved simultaneously. The
excitation pressure is pe, the remaining reaction pressures
being due to: interaction of the fluid with the surrounding
medium (transmission pt and radiation pr), to the fram-
ing beams pf , and to the coupling between the plates gov-
erned by the cavity pc. The mass densities of the plates per
unit area are denoted as m00

1 and m00
2 respectively, the flex-

ural rigidities being denoted as D1 and D2 respectively.
The effects of moments and boundaries are of no concern.
Small passive linear pressures and deformations are as-
sumed.

2.3. Fourier transform of the governing equations

The Fourier transform of the displacement w i, i = f1; 2g,
with respect to the co-ordinates x and y is defined as

~wi(�; �) =

Z Z 1

�1

wi(x; y)e
i(�x+�y)dxdy (3)

where i = 1; 2. The corresponding inverse transform is
then defined as

wi(x; y) =
1

4�2

Z Z 1

�1

~wi(�; �)e
�i(�x+�y)d�d� (4)

where � and � are the transform wavenumbers in the plate
in the x- and y-directions, respectively.

Since (1) and (2) are differential equations, it can be
postulated that the reaction pressures are related to the dis-
placements by linear operators, including constants and x-
and y-derivatives of arbitrary order. This implies the spa-
tial Fourier transform of each operator to be an algebraic
expression. The operators and the corresponding Fourier
transforms are given in section 3. Calligraphic font typed
symbols, such asR and T , denote the operators. Thus, the
reaction pressures can be written as

pr(x; y) = Rw1(x; y); (5)

pt(x; y) = T w2(x; y); (6)

and the coupling via the cavity can be written as the matrix�
pc(x; y; 0)
pc(x; y; d)

�
=

�J11 J12
J21 J22

� �
w1(x; y)
�w2(x; y)

�
; (7)

where the matrix operator components J ij can be re-
garded as components in a stiffness two-port.

The connection between each plate-frame joint is as-
sumed to be rigid, the continuity equation taking the fol-

lowing form

w1(nl; y) = w2(nl; y); n = �1; � � � ;1 (8)

F1;n � F2;n = Gw1(nl; y); n = �1; � � � ;1 (9)

where G is a linear beam operator, and F1;n and F2;n are
the reaction forces acting on the first and second plate,
respectively. The reaction pressures due to the frames are
thus

pf1(x; y) =

1X
n=�1

F1;n(y)Æ(x� nl); (10)

pf2(x; y) =

1X
n=�1

F2;n(y)Æ(x� nl): (11)

The transform of the sums in (10–11) can be written as

Fx;y

(
1X

n=�1

Fi;n(y)Æ(x� nl)

)
=

1X
n=�1

�Fi;n(�)e
i�nl

(12)
where Fx;y indicates the double Fourier transform opera-
tor in the x-y-directions (3), i = f1; 2g, and the force field
is only transformed in the y-direction. Lin and Garrelick
[9] assume that under such conditions the force function
is two-dimensional, their using the same form of expres-
sion here as for the sum of the displacement field derived
below. Although their result appears to be accurate, it will
become evident that there is no need of introducing this
assumption.

In order to connect the force field to the displacement
field, sums over the displacement field are also obtained.
First, a transformation in the y-direction of the displace-
ment field is performed

Fyw(nl; y) = �w(nl; �)

=
1

2�

Z 1

�1

~w(�0; �)e�i�
0nld�0 (13)

where Fy indicates the partial Fourier transform in the y-
direction. The full xy-transform is

Fx;y

(
1X

n=�1

w(nl; y)Æ(x�nl)
)
=

1X
n=�1

�w(nl; �)ei�nl

=
1

2�

Z 1

�1

1X
n=�1

~w(�0; �)ei(���
0)nld�0 (14)

The Poisson’s sum can be derived by contour integration
and Fourier transformation, c.f. Morse Feshbach [23], and
can be used to show that

1X
n=�1

ei�nl = 2�

1X
n=�1

Æ(�l � 2n�) (15)
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The total transform (14) can then be written as

1X
n=�1

�w(nl; �)ei�nl

=

Z 1

�1

1X
n=�1

~w(�0; �)Æ(�l � �0l � 2n�)d�0 (16)

Following this, the variable change of (� � � 0)l ! � is
made. After some manipulations, the transform of the sum
over the displacement points, (14), using (16), can then be
written as

Fx;y

(
1X

n=�1

w(nl; y)Æ(x�nl)
)

=
1

l

1X
n=�1

~w(�� 2n�=l; �) (17)

Transforming the pressures (5–7) and (10–11) gives alge-
braic expressions for the reaction pressures, which can be
written as

~pr(�; �) = R ~w1(�; �); (18)

~pt(�; �) = T ~w2(�; �); (19)

where R and T are the transformed versions of the linear
operators R and T . The transformed version of the linear
operators will be denoted as coefficients. For the matrix
relation (7), the transformed version is�

~pc(�; �; 0)
~pc(�; �; d)

�
=

�
J11 J12
J21 J22

� �
~w1(�; �)
� ~w2(�; �)

�
: (20)

and for the frame reactions it is

~pf1(�; �) =
1X

n=�1

�F1;n(�)e
i�nl; (21)

~pf2(�; �) =
1X

n=�1

�F2;n(�)e
i�nl: (22)

where (12) has been made use of in (21–22). The continu-
ity equation at each plate-frame boundary implies that

1X
n=�1

~w1(��2�n=l; �) =

1X
n=�1

~w2(��2�n=l; �); (23)

1X
n=�1

�F1;n(�) �
1X

n=�1

�F2;n(�)

=
G

l

1X
n=�1

~w1(��2�n=l; �) (24)

In formal terms, applying the Fourier transform (3) to
equation (1–2) yields�
D1

�
�2+�2

�2 �m00
1!

2
�
~w1 = ~pe + ~pr � ~pf1 � ~pc (25)�

D2

�
�2+�2

�2 �m00
2!

2
�
~w2 = ~pc � ~pt + ~pf2 (26)

Introducing two spatial dynamic stiffnesses (transformed
plate operators) gives

S1(�; �) = D1

�
�2 + �2

�2 �m00
1!

2 (27)

S2(�; �) = D2

�
�2 + �2

�2 �m00
2!

2 (28)

Equation (25–26) can then be rewritten, using (21–24) and
suppressing the � and � dependence where they are obvi-
ous, as

S1 ~w1 = ~pe +R ~w1 �
1X

n=�1

�F1;ne
i�nl

� J11 ~w1 + J12 ~w2 (29)

S2 ~w2 = J21 ~w1 � J22 ~w2 � T ~w2

+

1X
n=�1

�F2;ne
i�nl (30)

2.4. Solution of the transformed equations

It in now easy to rewrite (29–30) in matrix form as�
S1 �R + J11 �J12

�J21 S2 + T + J22

� �
~w1

~w2

�

=

�
~pe
0

�
�

2
664

1P
n=�1

�F1;ne
i�nl

�
1P

n=�1

�F2;ne
i�nl

3
775 (31)

where the �-dependency of �Fi;n is suppressed for reasons
of clarity. Denote the first matrix from the left as S,

S =

�
S11 S12
S21 S22

�
�
�
S1 �R+ J11 �J12

�J21 S2 + T + J22

�
:

Inverting S and multiplying from the left yields�
~w1

~w2

�
=

1

detS

�
S22 �S12
�S21 S11

�
(32)

�

0
BB@
�
~pe
0

�
�

2
664

1P
n=�1

�F1;ne
i�nl

�
1P

n=�1

�F2;ne
i�nl

3
775
1
CCA

which in formal terms is the solution to the transformed
displacement, although the relations between the displace-
ment and the force field in the beams need to be applied.
The calculations needed can be found in the Appendix,
where closed expressions for the summed forces are found
in equation (A7–A8). The solution is thus found to be
given by equation (32), where the first term is the solu-
tion to the problem without beams, and the second term is
the correction needed because of the beams.

If the sums over the reaction forces are put to zero,
the solution describes two plates coupled through a fluid
field and driven on the first plate by a point force. If the
couplings between the plates are put to zero, that is if
S21 = S12 = 0 and F2;n = 0, 8 n = 0; �1; �2; � � � , the
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equation for the displacement of the first plate becomes

~w1 =
~pe
S11

� P1G/l

S11 (1 + Y11G/l)
(33)

where the notation P1 and Y11 is defined in the appendix.
This result, equation (33), is equivalent to the results ob-
tained in [11] and [13] (if the second periodicity of beams
is not taken into account), and describes the displacement
of a single plate periodically reinforced by beams.

3. The system; the excitation and reaction forces

In order to obtain a complete solution, the forces and pres-
sures involved need to be specified.

3.1. The excitation force

The excitation force is assumed to be a point force in the
position x0, y0.

pe(x; y) = FRÆ (x� x0; y � y0) (34)

where FR is the time-frequency Fourier transform of the
excitation force of the impact under consideration, and the
subscript R stands for repeated signals. The corresponding
spatial Fourier transform is

~pe(�; �) = FRe
i(�x0+�y0) (35)

FR being specified in [1], and some further considerations
being found in section 4.3.

3.2. The frame reactions

For the n’th frame, the equation of motion, modelled as a
Euler beam and excited by a linear force Qn(y) along the
line x = nl,

Ef If
d4un
dy4

� �fAf!
2un = Qn (36)

where Ef If is the bending rigidity and �fAf is mass per
unit length of the frame. The difference between the plates
frame reaction pressure is

pf1 (x; y)� pf2 (x; y) (37)

=
1X

n=�1

�
Ef If

d4un
dy4

� �fAf!
2un

�
Æ (x� nl)

From equation (36), the operator G in equation (9) can
now be identified. The algebraic expression for G in (24)
is found by transforming (36) as follows:

G = Ef If�
4 � �fAf!

2 (38)

and equation (24) can be found then by transforming (36),
making use of (12).
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Figure 3. The acoustic pressure in the outer fields.

3.3. The fluid reactions

Consider Figure 3, in which a fluid occupies the upper
and lower half spaces. The two fields are assumed to
have the same sound speed c0, density �0 and wavenum-
ber k = !=c0. Two moving surfaces occupy the x-y-
plane in z = 0 and z = d, vibrating with displacements
w1(x; y) and w2(x; y). The acoustic pressure satisfies the
Helmholtz equation�

@2

@x2
+

@2

@y2
+

@2

@z2

�
pr;t +

!2

c20
pr;t = 0; (39)

together with the boundary conditionsh
@pr
@z

i
z=0

= !2�0w1 ;
h
@pt
@z

i
z=d

= !2�0w2 (40)

which ensures both the equality of the fluid velocity at
the plate surface and the plate velocity. The relation be-
tween displacement and pressure can be found in e.g. [5,
pp. 502–505], and can for the radiated pressure be written,

~pr(�; �; 0) =
!2� ~w1(�; �)p
�2 + �2 � k2

; (41)

where the branch of 
 =
p
�2 + �2 � k2 is taken so that

<
 � 0, =
 � 0 if <
 = 0, in order that the condition for
outgoing waves be met.

In the same way, if z = d,

~pt(�; �; d) = � !2� ~w2(�; �)p
�2 + �2 � k2

(42)

Accordingly, one can identify the coefficients in (18–19)
as

R = �T =
!2�p

�2 + �2 � k2
(43)

3.4. The reaction of the fluid-filled cavities

Following the procedure described in the last section,
consider Figure 4, in which a fluid occupyies the space
0 < z < d. An acoustic pressure pc(x; y; z) is present.

Note that, as an approximation, in this description the
frames do not effect the cavity field. A more elaborate ac-
count of this will be presented in a forthcoming paper.
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Figure 4. The acoustic pressure in the cavity field.

The acoustic pressure satisfies the Helmholtz equation
that corresponds to (39), where cc is the speed of sound
in the medium and �c is the density. The acoustic pressure
also satisfies the boundary conditionsh

@pc
@z

i
z=0

= !2�cw1;
h
@pc
@z

i
z=d

= !2�cw2; (44)

which ensures the equality of the fluid velocity at the plate
surface and the plate velocity. The Helmholtz equation
is now transformed, a solution being found by assuming
there to be one wave in the positive z-direction and one in
the negative z-direction,

~pc(�; �; z) = p̂c+e
�i
p
k2
c
��2��2z (45)

+ p̂c�e
i
p
k2
c
��2��2z

where kc = !=cc is the wavenumber for the fluid in the
cavity, and cc is the speed of sound in the cavity. One
derivation with respect to z gives an expression suited to
the boundary condition. The amplitudes of the compo-
nents in the standing wave are then obtained, using (44)
and (45). After some manipulations, setting z = 0 and
z = d the result, written in a matrix form, reads�

~pc(�; �; 0)
~pc(�; �; d)

�
=

!2�c
kd

�
�
cot (kdd) csc (kdd)
csc (kdd) cot (kdd)

� �
~w1(�; �)
� ~w2(�; �)

�
; (46)

where J11, J12, J21 and J22 in equation (20) can be iden-
tified, and kd �

p
k2c � �2 � �2 and where the branch of

kd = i
d is so taken that <
d � 0, =
d � 0 if <
d = 0.
Moreover, cotx = cosx= sinx and cscx = 1= sinx.

If the cavity is filled with mineral wool, a semi-
empirical model of an equivalent fluid, as formulated by
Delaney and Bazley [24] and later also investigated by
Mechel [25], can be used to derive both the wavenumber
kmin and the impedance zmin to be used,

kmin = k
��i 0:189C0:618 + 1 + 0:0978C0:693

�
; (47)

zmin = �0c0
�
1 + 0:0489C0:754 � i 0:087C0:731

�
; (48)

where
C � Rmin=(�0f) ;

Rmin being the flow resistance of the mineral wool, which
is the only material parameter of the mineral wool in-
cluded in the model, and where Rmin = �p=hu, �p
being the pressure difference over a sample of depth h
under a flow velocity u. Equation (46) is then replaced
by the corresponding equation for mineral wool, where
kd;min �

p
k2min � �2 � �2 is used instead of kd and �c is

replaced by zmin=c0. For a partly filled cavity, a combina-
tion of the expressions (46) and the corresponding mineral
wool equation need to be used, which is described in the
appendix, equations (A9–A14).

4. The response; radiation, impact noise level and
tonal spectrum

In measuring the impact noise level, the response quantity
is the sound pressure level in the receiver room. In the
prediction model, this quantity needs to be simulated.

4.1. Radiated power from an infinite area

In order to compare the calculations with measured val-
ues, the radiated power is now focused upon. The finite
area of radiation, although it probably affects the result,
is not considered here. Instead the expression for power
radiation found in Cremer and Heckl [5, pp. 534] will be
employed:

�Rad =
k�c

8�2

Z Z
�2+�2�1

!2 j ~w (�; �)j2p
k2 � �2 � �2

d�d� (49)

(This expression was derived for a finite radiation situ-
ation, but it is also suited for point excitation, as is the
case here.) In order to simplify the integration, use � =
kr sin(') and � = kr cos(') so that d�d� = krdkrd'

�Rad =
k�c

8�2
(50)

�
kZ

0

2�Z
0

!2 j ~w (kr sin (') ; kr cos ('))j2p
k2 � k2r

krdkrd':

In [7, 8, 18], use was made of an equivalent expression,
emanating from the far-field pressure. Equation (50) is in-
tegrated numerically, see section 5.1.

4.2. Power balance for standard impact noise

The impact noise level is defined as [4]

Ln = Lp + 10 log
A

A0
dB (51)

where Lp is the measured sound pressure level, A is the
absorption area and A0 = 10 m2 is a reference. Written
with an antilogarithm applied, the expression is instead

p2n =
D
jpj2
E A

A0
(52)
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where hjpj2i is the mean square pressure and p2n denotes
the ’equivalent impact noise pressure’ (rms). A power bal-
ance reads

�Rad = �Out =

D
jpj2
E

�c

A

4
(53)

Combing (52) and (53) gives

p2n = �Rad
4�c

A0
; (54)

and therefore

Ln = 10 log

 
�Rad

p2ref

4�c

A0

!
dB: (55)

4.3. Tonal spectrum, transfer functions and third octave
band values

The theoretical model of the system is derived, a exp(i!t)
dependence being assumed, which is equivalent to apply-
ing a time-frequency Fourier transform to the system. The
driving force caused by the tapping machine can be re-
garded as an array of periodic force pulses, as described
in reference [1], equation (1). The time-frequency Fourier
transform of this signal is a tonal spectrum, see refer-
ence [1] equation (3). A two-sided description of the driv-
ing force is achieved by applying a complex Fourier se-
ries. Non-zero values are then only present at discrete fre-
quency points, nfr, the positions of the Dirac’s in the
sum. In standard impact noise level measurements, third
octave bands are employed. The third octave band levels
are found by adding the responses calculated in frequency
points mfr, where the integer m 2 �ft=f , where �ft is
the third octave band in question.

5. Results and discussion; numerical computations
and comparison with measurements

Comparisons of the measured data with the computations
need to be performed so as to judge whether the proposed
prediction model is sufficiently accurate enough.

A possible disagreement between the model and the
measurements could be due to details in the real structure
that are ignored in the model, e.g. moment coupling or or-
thotropic behaviour in the upper and lower plates.

The excitation position is an important aspect of the
problem, most of the calculations presented being means
over different positions (15 positions) in order to simulate
the measurements, which are also means over different po-
sitions.

The present chapter is disposed as follows: the calcula-
tion program is discussed, measurements found in the lit-
erature are presented, the material data is defined, a com-
parison is made with conditions of no mineral wool in the
cavity (the mean value and the values at different posi-
tions), a comparison is made with mineral wool in the cav-
ity, and a comparison is made with an orthotropic plate.
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Figure 5. Flow chart for the calculation program.

5.1. Programming

Since the theoretical model proposed in the paper is not a
closed expression, equation (50) containing integrals that
are intended to be solved numerically, program coding is
an important part of the prediction model. Certain impor-
tant aspects of the program will be presented both in text
and in flow-chart form (Figure 5). The program is written
in MATLAB [26].

The program starts by defining the material properties,
together with the range and resolution present in the fre-
quency and wave number parameters ' and k r. The ma-
terials are described in section 5.3. The frequency range
includes the third octave bands from 50 Hz to 5000 Hz,
the resolution being the same as for the tapping machine,
�f = fr = 10 Hz. The wavenumber parameters have the
ranges ' 2 f��+ �; �+ �g and kr=k 2 f0+ �; 1+ �g, so
as to include the radiating wavenumbers, where the small
number � = 10�8 is used in order to avoid problems of
singularity. The resolution for the wavenumber parame-
ters is �' = 2�=25 and �kr=k = 1=100.

Convergence is checked by means of visual inspection
as the resolution is increased. Only small changes in the
results where noted in the range �kr=k = 1=30� 1=200
and �' = 2�=7:5 � 2�=50. The convergence was also
checked by comparison with an adaptive Gaussian quadra-
ture (in the low frequencies); only minor discrepancies be-
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� ��

Figure 6. Two floor structures considered in [22]. a) 67 � 220 mm
beams, 600 mm spacing, 22 mm matched boards in floor and ceiling.
b) The same plus 120 mm mineral wool (density 20 kg/m 3).

ing noted. Note that this convergence reasoning is only
valid, however, for a third octave-band integrated spec-
trum. If a narrow-band spectrum is calculated, the adaptive
Gaussian quadrature is probably needed.

The force spectrum is then calculated, using the results
reported in [1], yielding a complex Fn for each frequency
point.

The different parameters required are then calculated in
the for-loops according to Figure 5. The for-loops runs
over the wavenumber parameters ' and kr=k, and over
the frequency f . The infinite sums are calculated in sub-
routines, truncated to an appropriate number of terms on
each side of zero. At the end the trapezoid rule is used to
integrate over the kr=k and the the ' points. The third oc-
tave band values is then being calculated and the impact
noise level is being found by means of equation (55). The
program then stops, producing various plots and saving
routines.

5.2. Bodlund’s measurements

The floor structure studied in the present paper has very
poor impact noise insulation and is thus not commonly
used for insulation between dwellings. However, it can
sometimes be found as a structure separating rooms in the
same dwelling, such as in two-story villas. Since build-
ing codes are mainly concerned with disturbances between
neighboring dwellings, it is difficult to find laboratory
measurements concerning this type of floor structure.

In [22] Bodlund studied airborne and impact-noise insu-
lation in buildings with wooden floor structures built in the
1930s or earlier. The report contains both laboratory and
field measurements of wooden floor structures according
to the ISO standard [4]. Some of the laboratory measure-
ments are made on the very simple floor structures shown
in Figure 6. These measurements are suitable for compar-
ison with result of the present prediction model.

The measurements were made at SP, the Swedish Na-
tional Testing and Research Institute. The dimensions of
the laboratory were 3:70 � 6:66 � 5:38 m, giving a vol-
ume of 138.2 m3. The dimensions of the specimen open-
ing were 3� 4 m.

5.3. Material data

Since finding the proper material data is a difficult task
when comparisons are made with measurements con-

0 0.05 0.1 0.15 0.2 0.25 0.3x [m]

Figure 7. The 15 calculation positions. A beam is located at x=0 m
(- - -) and the line halfway between the beams is located at x=0.3 m
(– � –).

ducted by others, one can achieve little more than a good
guess regarding the actual material data. This is similar,
however, to the situation when designing a floor.

The following data have been used in the numerical cal-
culations: distance between beams l = 0:6 m, modulus in
the plates Ep=(1� �2) = 7:2 � 109 Pa, Young’s modulus
in the framing beams Ef = 9:8 �109 Pa, Young’s modulus
for the local stiffness Elocal = 1:42 � 109 Pa. The local
Young’s modulus is taken as the geometric mean of the
modulus in the three directions. The density of the beams
and plates is �p = �f = 500 kg/m3, the thickness of the
plates h = 22�10�3 m, the material damping � = 0:03, the
density of the air �0 = 1:29 kg/m3, and the speed of sound
in air c0 = 340 m/s, with a damping of �air = 1 � 10�8 in
the surrounding air and �c = 1 � 10�3 for the air trapped
in the cavity. The damping is added to the modulus. The
beams are 0.220 m in height and 0.067 m in width. Thus,
the distance between the plates is also d = 0:220 m. In the
first and second examples (sections 5.4–5.5), no mineral
wool was used. In the third example (section 5.6), mineral
wool with a flow resistance of Rmin = 11770 Ns=m

4 and
a depth of dmin = 0:12 m was employed.

The local stiffness is defined as the apparent stiffness
for a local indentation, and is for the so-called Bossinesq
deformation (which is the deformation caused by a rigid
indenter statically acting on a semi-infinite elastic half-
sphere) K = ElocalDh=(1� �2), where Dh is the diam-
eter of the indenter, se [1]. A more elaborate description
of the local stiffness (or more correctly local mobility) is
also employed, taken from [27] where three-dimensional
elastic plate theory is used.

The 15 calculation positions are x0 = f0 0.012 0.053
0.084 0.101 0.122 0.150 0.175 0.205 0.213 0.220 0.232
0.255 0.291 0.3g m and y0 = 0 m, chosen randomly (ex-
cept for the start and the end point). The positions are
shown in Figure 7.

5.4. Comparison with a simple floor structure without
mineral wool.

The floor structure described in Figure 6 a) will be con-
sidered first, see Figure 8. The cavity of this structure
contains no mineral wool. Four different descriptions of
the excitation, increasing in their degree of elaboration,
were tested. The excitation/mobility models, described in
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Figure 8. Floor a). Mean over 15 excitation positions in the calcula-
tions, where ’o’ denotes the mean of the calculated values and ’+’
denotes measured values [22]. Case I) (—), case II) (- - -), case III)
(� � �) and case IV) (� � � ).

[1], are I) the lumped model, in which the frequency-
independent stiffness K and resistance R are employed,
is represented by a solid line (—); II) the ’global’ driving-
point mobility YG expression, is denoted by the dashed
line (- - -); III) the expression YG + i!=K, in which K is
frequency independent according to (16) in [1], is denoted
by a dashed-dotted line (� ��); and finally IV) the mobil-
ity expression YG+YL�1=(8

p
MD), the ’local’ mobility

YL being calculated according to [27], is described by the
dotted line (� � � ).

For all the excitation situations, the agreement between
the measurements and the computations, as shown in Fig-
ure 8, is quite good in the frequency range of 100-800 Hz.
Although all the peaks and troughs are there, a system-
atic disagreement of approximately 5-3 dB is found, the
calculations underestimating the results. This is probably
due to the lack of moment coupling in the model, as will
be discussed in the context of the orthotropic model, sec-
tion 5.7. Other possible explanations for the disagreement
are found below. The best agreement for the higher fre-
quencies is with the most elaborate mobility model IV)
(however, for frequencies below 800 Hz this case is the
worst). The I) and III) models are almost the same in the
agreement achieved. If no local weakness is employed in
the mobility description, as in model II), high-frequency
behaviour cannot be predicted. It can be concluded that
the choice of excitation/mobility description is crucial to
the prediction model, the local stiffness (or mobility) is
being especially important.

The room dimensions influence the measured results in
the frequency region below the cut-on frequency for the
diffuse-field assumption. This lower frequency limit, at
which a statistical treatment of the superimposed normal
modes in a room is possible, can be shown to be approxi-

mately as in [28, 29],

fg � 2000

r
T60
V

(56)

where Schroeder [29] uses a constant of 4000 instead of
2000. The volume of the room employed is V =138.2 m 3,
the reverberation time being assumed to be T60 � 2 s.
Although the frequency limit then is fg � 240 Hz, the
agreement is quite good even below this frequency.

Another explanation of the disagreement found in the
three lowest third octave bands is that the tonal spectrum
is not narrow enough to be evenly spread over the lowest
third octave bands. The first band, 50 Hz, has only one
tone. The next, 63 Hz, has two tones. The 80 Hz third oc-
tave band has again only one tone, whereas the 100 Hz
third octave band, the 125 Hz third octave band and the
160 Hz third octave band have three tones, and so on. In
obtaining the measurements, the periodicity of the ham-
mer signal is not perfect, resulting in a less than distinct
tonal spectrum, making the problem not particularly evi-
dent in the measurements. Yet another explanation is that
the disagreement at low frequencies could come from the
radiation effect associated with the finite size of the floor
not taken into account for in the model.

A possible explanation of parts of the disagreement
found in the middle to higher frequencies is that the in-
fluence of the segmentation of the air cavity by the beams
can not be completely neglected, in particular when the
cavity is without mineral wool.

In the higher frequency region, above approximately
800 Hz, the disagreement between measurements and the
calculations is approximately 5 dB, as can be seen in curve
IV). The slope, however, is almost the same in all the
curves except II). A possible explanation of this behaviour
is that the Young’s modulus for the local stiffness is over-
estimated, giving too high a cut-off frequency f cut for
the driving force spectrum given in reference [1] equa-
tion (15). When the material data is so defined in sec-
tion 5.3 and in mobility model II), the local stiffness is
K = 4:66 � 107 N/m and the resistance R = 2:12 � 103
Ns/m, and the mass of the hammer is M = 0:5 kg, giving
a cut-off frequency of fcut � 1540Hz. The measurements
are assumed to have a lower cut-off frequency. By visual
inspection, the cut-off frequency was estimated to be ap-
proximately fcut;measure � 800 Hz, giving a local stiff-
ness of K = 1:26 � 107 N/m, the resistance being assumed
to be constant.

In [22] another structure that was almost as simple as
the one above was studied, with the difference that the
ceiling plate was replaced by a chipboard of thickness
h = 12 � 10�3 m, density �p = 700 kg=m

3, and mod-
ulus Ep=(1� �2) = 3 � 109 Pa.

The agreement in Figure 9 is not as good as in Figure
8, the differences at around 200 Hz exceeding 10 dB. For
higher frequencies, the agreement is better. The disagree-
ment is possible due to the lack of moment coupling in the
theoretical model.
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Figure 9. Floor a), but the ceiling plate exchanged for a chipboard.
Means of 15 excitation positions are shown in the calculations, ’o’
denoting the mean of the calculated values and ’+’ denotes the mea-
sured values [22]. Case I) (—), case II) (- - -), case III) (� � �) and
case IV) (� � � ).
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Figure 10. Floor a). Calculations made 15 excitation positions, ’o’
denoting the calculated values for the different positions and the ex-
citation according to case IV), and ’+’ denoting measured mean val-
ues [22].

5.5. Comparison between different positions

The position of excitation is an important aspect of the
problem. In order to obtain data for simulating the mea-
surements presented in the previous section, a mean over
15 positions was calculated. Each of these computations is
shown in Figure 10 for the same floor as in Figure 8, floor
a) in Figure 6.

The influence of the excitation position was also stud-
ied in [22]. For the same floor structure, Figure 6 a), mea-
surements in which the tapping machine was placed at 10
different positions coinciding with the beam positions and
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Figure 11. Floor a). Positions between beams, x0=0.3 m and y 0 = 0

m, where ’o’ denotes the calculated values and ’+’ denotes measured
values [22]. Case I) (—), case II) (- - -), case III) (� � �) and case
IV) (� � � ).
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Figure 12. Floor a). Positions at a beam, x 0 = 0 m and y0 = 0 m,
where ’o’ denotes the mean of the calculated values and ’+’ denotes
measured values [22]. Case I) (—), case II) (- - -), case III) (� � �)
and case IV) (� � � ).

at 10 different positions between two beams (the same dis-
tance as to the beams) are presented. These measurements
can be used to investigate how well the present model can
take position into account.

As the first example of the influence of position, con-
sider the excitation as being located between two beams.
The comparison this results in is shown in Figure 11.
The agreement is relatively good within the entire fre-
quency range. The slopes, peaks and troughs in the the-
oretical model follow satisfactorily those found in the ex-
periments. However, one can note a 10 dB discrepancy in
the frequency range 300-600 Hz for case IV).
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Figure 13. Floor b), with mineral wool in cavity. Mean are obtained
over 15 excitation positions in the calculations, where ’o’ denotes
the mean of the calculated values and ’+’ denotes measured values
[22]. Case I) (—), case II) (- - -), case III) (���) and case IV) (� � � ).

In Figure 12 the comparison involves the excitation be-
ing located directly at a beam. For cases II) and III), exci-
tation describes the situation up to about 1000 Hz well.
Thereafter, cases I) and IV) are closer to the measured
curve, indicating a too high local stiffness. The local stiff-
ness of the beam is probably closer to the Bossinesq stiff-
ness, c.f. reference [1] equation (16), since the depth of
the deformed material is much greater than when no beam
supports the plate, which is the fact in cases I) and III). The
real part of the mobility is close to that of a beam, which is
true for cases II), III) and IV). Thus, case III) should have
the best fit here, which the results indicates.

Another explanation of the disagreement could be that
the excitation caused by the ISO tapping machine includes
the excitation both of the beam and the plate due to the fi-
nite area of the hammer and to the fact that five hammers
at different position are employed, whereas in the calcula-
tion the excitation point is given exactly and is infinitely
small.

The structure behaves more like an orthotropic struc-
ture if driven at the beams, the vibration will be almost
the same on both sides. Comparing the results of the cal-
culations in Figure 12 with those of the orthotropic cal-
culations in Figure 14, indicates the two cases to be quite
similar.

5.6. Comparison when mineral wool is present.

In the floor shown in Figure 6 b) the cavity is partly filled
with mineral wool. The agreement is close for this floor
too, as can be seen in Figure 13. For a discussion of the
excitation cases, see section 5.4.

5.7. Comparison with an orthotropic plate

When the bending wavelength is considerably greater than
the beam spacing, the structure can be regarded as an or-

thotropic plate [5, pp. 301–304].�
Dx

@4

@x4
+ 2 (D� + 2DG)

@4

@x2@y2
+Dy

@4

@y4

�
w

� m00
orth!

2w = pe � pa (57)

The stiffnesses can be defined as

Dx = E
1��2 I

0
x; Dy =

E
1��2 I

0
y;

Dxy � D� + 2DG �pDxDy:

where
I 0x = h3

6 + 2h (d=2 + h)
2
;

I 0y =
h3

6 + 2h (d=2 + h)
2
+ bd3

12l ;

and where b is the width of the beam, d is the distance
between the plates, h is the thickness of the plates and l is
the spacing between the beams. As before, a small amount
of damping can be added to the stiffness. The moments of
inertia is calculated using the configuration shown in Fig-
ure 6 a), and assuming the ceiling plate and the floor plate
to be equal and to interact fully with the beams (includ-
ing the moment coupling). The total mass per unit area is
m00

orth = m00
1 +m00

2 + bd�f=l. Applying the Fourier trans-
form (3) to equation (57) gives an algebraic expression
that can be solved for the transformed displacements

~w (�; �) =
~pe (�; �)

Sorth (�; �)
(58)

where, if radiation damping is included, Sorth is the spa-
tial stiffness,

Sorth (�; �) = Dx�
4 + 2Dxy�

2�2 +Dy�
4

� m00
orth!

2 � 2!2�p
�2 + �2 � k2

; (59)

The same procedures as described above can be used to
obtain the impact noise level.

In Figure 14 results for the experiment and for equa-
tion (58) as inserted into the power expression described
in sections 4.2–4.3 are compared. The excitation is taken
as case I); the frequency being independent of the stiff-
ness and the resistance. The low-frequency asymptote ap-
pears to coincide well. This is probably due to the moment
coupling being present. In the mid- and high-frequency
regions, however, discrepancies can be noted. In the fre-
quency region of 100 – 700 Hz, peaks and troughs are
found in the experimental results that are not present in the
orthotropic model. If the point mobility of the orthotropic
model had been used in the excitation model, the model
would have overestimated the results above approximately
700 Hz, probably due to use of the excitation model and
to the orthotropic model being too stiff.

6. Summary and concluding remarks

A theoretical model for simple point-excited lightweight
floors is presented. The model is used to predict the im-
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Figure 14. Orthotropic plate, where ’o’ denotes calculated values,
’+’ denotes measured values (just as in Figure 8), excitation case I)
and ’2’ denotes measured values with excitation on the beams.

pact noise level. Comparisons of numerical computations
with measurements found in the literature are made. The
agreement between the measurements and the calculations
is relatively close, especially since the peaks and troughs
found in the experimental results can also be seen in the
predictions, although there is a systematic underestimation
of the impact noise level of about 5-3 dB.

An orthotropic plate model was also studied. The re-
sults achieved for the orthotropic plate indicate the lack
of moment coupling in the model to probably be the main
reason for the underestimation of the impact noise level in
the full prediction model.

Quite an accurate description of the force spectrum
was achieved by use of a lumped frequency-independent
K and R impedance description. However, in order to
achieve a satisfactory description here, the global and local
driving-point mobilities need to be used and in combina-
tion in determining the impact force.

Finally, it can be concluded that it is important to use
an accurate and detailed model of both the system and the
excitation force, in order to predict the impact noise level
of a lightweight floor structure.
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Appendix

Define two help matrices P, of size 2� 1, andY, of size
2� 2, �

P1
P2

�
=

1X
n=�1

1

detS(��n2�=l) (A1)

�
�
S22(��n2�=l)
�S21(��n2�=l)

�
~pe (��n2�=l)�

Y11 Y12
Y21 Y22

�
=

1X
n=�1

1

detS(��n2�=l) (A2)

�
�
S22(��n2�=l) �S12(��n2�=l)
�S21(��n2�=l) S11(��n2�=l)

�
:

Equation (32) is now to be summed at the position � =
n2�=l. In the first step, the variables need to be changed
to �� em, where m is an integer,�

~w1 (��m2�=l)
~w2 (��m2�=l)

�
=

1

detS(��n2�=l) (A3)

�
�
S22(��n2�=l) �S12(��n2�=l)
�S21(��n2�=l) S11(��n2�=l)

�

�

0
BB@
�
~pe(��m2�=l)

0

�
�

2
664

1P
n=�1

�Fn;1e
i(��m2�=l)nl

�
1P

n=�1

�Fn;2e
i(��m2�=l)nl

3
775
1
CCA:

The statement exp(i�nl + i2�mn) = exp(i�nl) can be
used to suppress the m-dependence of the sum. In the sec-
ond step, sum over all m’s and then let m = n,2

664
1P

n=�1
~w1 (�� n2�=l)

1P
n=�1

~w2 (�� n2�=l)

3
775 =

�
P1
P2

�

�
�
Y11 Y12
Y21 Y22

�2664
1P

n=�1

�Fn;1e
i�nl

�
1P

n=�1

�Fn;2e
i�nl

3
775 (A4)

where the matrixes of (A1–A2) are used. Solve for two
of the infinite sums using (23–24) in (A4), which yields
four unknowns and four equations. The summed displace-
ment is solved for, giving two remaining equations for the
summed forces�

1 + Y11
G

l

� 1X
n=�1

�Fn;1e
i�nl

=
G

l
P1 +

�
Y12

G

l
+ 1

� 1X
n=�1

�Fn;2e
i�nl (A5)

�
1 + Y21

G

l

� 1X
n=�1

�Fn;1e
i�nl

=
G

l
P2 +

�
Y22

G

l
+ 1

� 1X
n=�1

�Fn;2e
i�nl (A6)
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Solving for the summed forces yields

1X
n=�1

�Fn;2e
i�nl =

�
GP2

l + Y21G
� GP1
l + Y11G

�

�
�
Y12G+ l

l + Y11G
� Y22G+ l

l + Y21G

��1
(A7)

1X
n=�1

�Fn;1e
i�nl =

�
GP1

l + Y12G
� GP2
l + Y22G

�

�
�
Y11G+ l

l + Y12G
� Y21G+ l

l + Y22G

��1
(A8)

The expressions to be used for a partly filled cavity, dis-
cussed in section 3.4, is now to be found. The relation be-
tween the plates can be expressed in transfer matrix form
as �

~pc(�; �; 0)
~w1(�; �)

�
=

�
T11 T12
T21 T22

� �
~pc(�; �; d)
~w2(�; �)

�
(A9)

The total transfer matrix T is found by multiplying the
transfer matrices of the two parts. The result reads

T11 = cos (kdair) cos (kmindmin)

� sin (kdair) sin (kmindmin) �c=zmin; (A10)

T12 = � cos (kdair) sin (kmindmin)!zmin

� sin (kdair) cos (kmindmin) �c!; (A11)

T21 = sin (kdair) cos (kmindmin) =(�c!)

� cos (kdair) sin (kmindmin) =(zmin!); (A12)

T22 = � sin (kdair) sin (kmindmin) zmin=(�c)

+ cos (kdair) cos (kmindmin) ; (A13)

where J11, J12, J21 and J22 in equation (20) can be iden-
tified respectively, as

J11 =
T11
T21

; J12 =
1
T21

; J21 =
1
T21

; J22 =
T22
T21

:
(A14)
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Summary
Lightweight walls are often designed as frameworks of studs with plates on each side – a double-plate structure. The
studs constitute boundaries for the cavities, thereby both affecting the sound transmission directly by short-cutting the
plates, and indirectly by disturbing the sound field between the plates. The paper presents a deterministic prediction
model for airborne sound insulation including both effects of the studs. A spatial transform technique is used, taking
advantage of the periodicity. The acoustic field inside the cavities is expanded by means of cosine-series. The transmis-
sion coefficient (angle-dependent and diffuse) and transmission loss are studied. Numerical examples are presented and
comparisons with measurement are performed. The result indicates that a reasonably good agreement between theory
and measurement can be achieved.

PACS no. 43.40.Dx, 43.55.Ti, 43.20.Tb

1. Introduction

New building systems are often designed as lightweight
systems. One advantage of these systems is the possibility
they provide of lowering house production costs. The in-
terest in such lightweight building techniques is therefore
large. Acoustically there are both advantages and disad-
vantages with such structures. One of the advantages is
that a wall consisting of two plates – a double-plate struc-
ture – provides good insulation against airborne noise in
relation to its weight. There is, however, no theoretical
prediction model for sound-insulation that takes into ac-
count all important aspects of such a wall system.

If a double-plate structure consists of a framework of
studs, the studs will not only influence the vibration field
directly, i.e., short-cutting the plates as sound bridges [1,
pp. 462–474], but also affect the acoustic field in the cav-
ities. The studs can be seen as walls in the cavities, thus
introducing finiteness, which leads to resonance. Consider
therefore a double-leaf structure excited by an incoming
wave on the source side. The plate on the source side is
excited and will radiate to the cavities and excite the fram-
ing beams. The plate on the receiver side is then excited
by the acoustic field in the cavities and by the vibration
of the beams, and will radiate to the surrounding acoustic
fields.

In building acoustics it is common to use Statistical En-
ergy Analysis (SEA), different power-flow methods such
as those associated with the new European standard for
computing building acoustics (EN 12354 [2]), or various
semi-empirical methods to find prediction models. Such
approaches are often preferable when details of a standard
type of construction are considered, for example, when
well-known elements are combined in EN 12354, or when
large variations in the material or geometric data affect the
results very little. An approach of this type is basically
pragmatic, emphasis being placed on achieving reason-

able results quickly. The amount of information used to
account for the physics involved is minimal, each build-
ing element being described by a number (for each fre-
quency); the mean of the sound energy being obtained for
each part or component of the structure separately. The
fact that only a minimal amount of information is utilized
here represents both an advantage and a disadvantage.
These approaches are particularly appropriate for dealing
with homogeneous and clearly distinguishable building el-
ements, such as in traditional building construction sys-
tems in which the elements are heavy and homogeneous.
Such approaches are not likely to be successful, however,
if one’s interest is in discovering new types of solutions,
since the lack of the information needed makes it impos-
sible to describe the physics of the situation adequately.
Moreover, wood frame building elements (or other stud-
plate building elements) may not be considered as homo-
geneous and isotropic. Hence, they do not meet the ba-
sic requirements for simplified prediction models (such as
EN and basic SEA models) where it is assumed that all
building elements can be considered to be a single subsys-
tem. This has also been observed in measurements [3]. For
studies of SEA applied to sound insulation with double
wall systems, Craik [4] and Craik and Smith [5] are exam-
ples. As an example of semi-empirical prediction models,
the model described by Sharp [6] should be mentioned.

Instead, an analytical/deterministic approach is used in
the present paper. The approach is largely based on the
following papers. The classical work on double-leaf walls
is made by London [7]. This work, however, does not
take into account the studs or the finiteness of the cavi-
ties. Cremer et al. [1, pp. 450–462] describe two parallel
plates connected via a locally reacting stiffness layer. A
resent similar study by Kropp and Rebillard [8], treats air-
borne sound insulation of double-wall constructions with-
out studs. The focus is on the possibility of optimizing
the sound insulation. Lin and Garrelick [9] investigated
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the transmission of a plane wave through two infinite par-
allel plates connected by periodical studs that behave as
rigid bodies. A fluid coupling in the cavities between the
plates was also present, which let the waves pass unaf-
fected through the beams. The two systems were solved
simultaneously by means of Fourier transforms and peri-
odic considerations. Recent measurements on wood stud
walls, made by Bradley and Birta [10], show that the Lin
and Garrelick theory explains the most important low-
frequency features of sound transmission through these
wood stud walls. Rumerman [11] and Mace [12] treated a
single infinite plate reinforced by beams and excited by a
convected pressure (that could be a incoming plane wave)
using Fourier transforms. Takahashi [13] considered noise
control in buildings having double-plate walls. Each struc-
ture considered consisted of two parallel plates of infinite
extent connected by various connectors. The connectors
were point connectors or rib-stiffeners, and the sound field
in the cavity passed unaffected through them. The struc-
tures were driven by point forces, and the resulting sound
radiation was studied. The problem of acoustic reflection
of a double-plate system with periodic connectors were
studied by Skelton [14], who also assumed the connectors
to be invisible to the fluid in the cavity. The connectors
were applied in form of longitudinal plate waveguides.
The related problem of acoustic reflection of a plate with
periodic ribs and a back cavity was studied by Sakagami
et al. [15]. Also here the ribs were acoustically transparent
so that the sound field in the back cavity was not influ-
enced by them. The only paper found that takes account
of the influence of ribs or connectors on the cavity field is
Skelton [16], who considered the effect of a single connec-
tor, rigid with respect to the fluid, using the Wiener-Hopf
technique. Also Urusovskii [17] studied a periodic dou-
ble plate system, but used a space-harmonic assumption
and truncated the infinite system of equation that arose.
The cavity field was unaffected by the beams. The present
author and Hammer have studied impact sound transmis-
sions in lightweight floors using transform technique [18],
including the beams and a cavity, but letting the waves go
unaffected through the beams (as in [9, 13, 14, 17, 15]).
A literature survey of available deterministic prediction
methods that takes periodicity into account can be found
in [19] (with focus on point excitation).

The approach in the present paper is similar to the one
introduced by Rumerman [11] and Mace [12], but the
treatment of the cavities is original for the present paper.
An expansion in a suitable orthogonal series is made for
the cavity field in order to take into account the finiteness
of the cavities. The paper is comprised as follows: Follow-
ing the introduction, the problem under consideration is
formulated. In section 3, the cavity reactions and field are
studied, and the remaining reaction forces are collected in
the section 4. In section 5, the solution is described. Sound
radiation and sound insulation are considered in section 6.
The numerical results are presented and discussed in sec-
tion 7, and the paper ends with some concluding remarks.
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Figure 1. A double leaf structure.

2. Formulation of the problem

Consider a double-leaf wall stiffened with studs, as in Fig-
ure 1. The studs are assumed to be infinitely stiff in bend-
ing round the z-axis and of zero thickness. However, they
are allowed to bend round the x-axis. The structure is in-
finite in both the x- and y-direction. The studs are located
periodically with equal distance l between them. The studs
are assumed to not cause any moment reactions or cou-
pling; the connection plate-stud is assumed to be in form
of a pin-joint. The displacement of the plates are denoted
w1 and w2, and the displacement of the n’th beam is de-
noted un.

In the field in front of the first plate a pressure p i due to
an incident wave, and a reaction pressure pr due to radi-
ated waves is present. In the field backing the second plate
a reaction pressure pt is present due to transmitted waves.
The incident pressure is of the form

pi = p̂ie
�i(kxx+kyy+kzz�!t) (1)

where a possible choice of the wave numbers are

kx = k sin � cos'; kz = k sin � sin'; ky = k cos �

i.e., an incoming wave with wavenumber k = !=c. The
time dependence and the z-dependence, exp(iwt� ikzz),
will henceforth be suppressed throughout. Further, since
the structure is periodic in x the response satisfies the pe-
riodicity relation, see e.g. [12] or [19],

wi(x + l) = wi(x)e
�ikxl (2)

usually denoted as Floquet’s principle.

2.1. Governing equations

The system of governing equations that is to be solved can
be written as

D0
1r

4w1�m00
1!

2w1= pijy=0� pcjy=0+ prjy=0�pf1 (3)

D0
2r

4w2�m00
2!

2w2= pcjy=d� ptjy=d+pf2 (4)

for the first and the second plate respectively, where

r4 =
@4

@ x4
� 2k2z

@2

@ x2
+ k4z
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Figure 2. Model for the equation of motion.

and D0
i and m00

i are the flexural rigidity and mass per unit
area of plate number i respectively, ! = 2�f is the an-
gular frequency and d the distance between the plates. It
is convenient to decompose the reflected pressure into two
components, pr = pg + ps, where pg is the reflected pres-
sure generated by a rigid reflector (geometrical reflection),
so that

pgjy=0 = pijy=0 ; (5)

and ps is the scattered part due to the elastic motion of
the structure. Figure 2 shows the different reaction fields.
The reaction pressures from the surrounding fluid can be
assumed to be coupled to the displacements field by oper-
ators,

psjy=0 = Rw1 (6)

ptjy=0 = T w2 (7)

where R and T are linear operators that will be deter-
mined in section 4. The cavity pressure pc and frame pres-
sure pf are treated in separate sections, due to their com-
plexity.

2.2. Transformed equations

The Fourier transform of the displacementw i with respect
to the co-ordinate x and the corresponding inverse trans-
form is defined as

~wi(�) =

1Z
�1

wi(x)e
i�xdx (8)

wi(x) =
1

2�

1Z
�1

~wi(�)e
�i�xd� (9)

Thus, the Fourier transform over x of the incoming wave
yields a Dirac function, ~pi = 2�p̂iÆ(� � kx). For the re-

action pressure, the transform yields algebraic expressions
instead of operators. Thus, the transformed pressures are

(~pi + ~pg) jy=0 = 4�p̂iÆ (�� kx) e
�ikzy;

~psjy=0 = R ~w1;

~ptjy=0 = T ~w2;

where R and T are the transformed version of the opera-
torsR and T . Applying the Fourier transform with respect
to x to equations (3–4), taking into account (6–7), gives�

S1 0
0 S2

� �
~w1

� ~w2

�
(10)

= 4�

�
p̂i
0

�
Æ (�� kx)�

�
~pf1
~pf2

�
�

�
~pcjo
~pcjd

�

where

S1(�) = D0
1

�
�2 + k2z

�2
�m00

1!
2 �R (�) ; (11)

S2(�) = D0
2

�
�2 + k2z

�2
�m00

2!
2 + T (�) ; (12)

are spatial stiffnesses. The solution of equation (10) and its
inverse transform is given in section 5. It is, however, first
necessary to give expressions for the reaction pressures.

3. The cavity

The reaction pressures due to the cavity field are examined
in this section.

3.1. The cavity, a parallelepipedic space

Consider ones more Figure 1, where a fluid is occupying
the space 0 < y < d, divided into subspaces nl � x �
(n+1)l. An acoustic pressure pc(x; y; z) is present in the
fluid. The acoustic pressure satisfies the Helmholtz equa-
tion �

@2

@x2
+

@2

@y2

�
pc +

�
k2c � k2z

�
pc = 0 (13)

where kc = !=cc is the wavenumber in the cavity (possi-
bly different from k, the wave number in the surrounding
fluid) and cc is the speed of sound in the medium. The
acoustic pressure also satisfies the boundary conditions�

@ pc
@ y

�
z=0

= !2�cw1 ; (14)�
@ pc
@ y

�
z=d

= !2�cw2 (15)

where �c is the density of the fluid. Equation (14) ensures
equality of the fluid velocity at the plate surface and the
plate velocity. These boundary conditions are the ones that
are fulfilled in the papers [9, 13, 16, 17, 18]. In the present
paper a new set of boundary conditions is also to be ful-
filled, namely�

@pc
@x

�
x=nl

= 0; (16)



4 Author: J. Brunskog
Div. Engieering Acoustic

TVBA– 3119 (2002)

n = 0; �1;�2; � � � ;�1

ensuring absence of displacement at the rigid walls at
x = nl. Divide the field into subfields corresponding to
the cavities

pc(x; y) =
1X

m=�1

p(m)
c (x; y)�(x;ml;ml + l) (17)

where

�(x;ml;ml + l) � � (x�ml)� � (x� (m+ 1) l)

and where �(x) is Heaviside’s step function and �(x; a; b)
is the ’hat’ function that equals unity between a and b and
are zero otherwise. Assume that the pressure field in the
m’th cavity can be written as an orthogonal sum of cosine
functions in the x-direction. Define "n,

"n �

�
1
2 if n = 0
1 if n 6= 0

Thus, the cosine expansion can be written

p(m)
c (x; y) =

1X
n=0

"np
(m)
c;n (y) cos(n�x/l) (18)

where ml � x � (m+ 1)l. It is easily shown that this as-
sumption fulfils the boundary conditions (14–15) and (16),
as well as the Helmholtz equation (13). The periodicity ,
expressed in (2), is now to be taken into account. This im-
plies that the pressure acting on two neighbouring bays is
related to each other though a phase difference

p(m+1)
c = p(m)

c e�ikxl

and especially

p(m)
c = p(0)c e�ikxml

Hence, equation (17) reduces to

pc(x; y) = p(0)c (x; y)

1X
m=�1

�(x;ml;ml+ l)e�ikxml (19)

Thus, the total field in the cavities is determined by the
field in the 0’th cavity. Expressing this field in terms of a
cosine series, equation (18), and inserting in (19), yields

pc(x; y) =

1X
n=0

"np
(0)
c;n(y) cos(n�x/l) (20)

�
1X

m=�1

�(x;ml;ml+ l)e�ikxml

Hence, the two sums are separated. The spatial Fourier
transform of the cavity reaction pressure formally is

~pc(�; y) =

1Z
�1

1X
n=0

"np
(0)
c;n cos(n�x/l) (21)

�

1X
m=�1

�(x;ml;ml+ l) e�ikxmlei�xdx

and will be further treated in section 3.4.

3.2. The field in the 0’th cavity

The cosine expansion (18) is inserted into the Helmholtz
equation (13). It can be shown that this expression reduces
to

@2p
(0)
c;n(y)

@y2
+

�
k2c �

�n�
l

�2
� k2z

�
p
(0)
c;0(y) = 0 ;

n= 0; 1; 2; � � � (22)

Define a propagation number for the n’th component


2n �
�n�

l

�2
+ k2z � k2c

The solution can be written as one wave in the positive
z-direction and one in the negative z-direction,

p(0)c;n(y) = p̂c;n+e
�
ny + p̂c;n�e


ny (23)

and one derivation with respect of y gives

@ p
(0)
c;n(y)

@ y
= 
n

�
�p̂c;n+e

�
ny + p̂c;n�e

ny
�

(24)

The remaining boundaries are now expanded into cosine
series

wi(x) =

1X
n=0

"nwi;n cos(n�x/l); (25)

where

wi;n =
2

l

lZ
0

wi(x) cos(n�x/l)dx: (26)

The boundary conditions (14–15) have to be fulfilled by
every Fourier component, connecting p (0)c;n to wi;n,

@ p
(0)
c;n

@ y

�����
y=0

= !2�cw1;n ;
@ p

(0)
c;n

@ y

�����
y=d

= !2�cw2;n

Taking into account the standing wave and its derivatives
(23–24) gives a system of equations, which yields the
following amplitudes of the components in the standing
wave,

p̂c+ =
!2�c

n

�
w2;n � w1;ne


nd
�

2 sinh (
nd)
; (27)

p̂c� =
!2�c

n

�
w2;n � w1;ne

�
nd
�

2 sinh (
nd)
(28)

Insert (27–28) in (23)

p(0)c;n(y) =
!2�c

sinh (
nd) 
n
(29)
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� (w2;n cosh (
ny)� w1;n cosh (
n (d� y)))

Putting y = 0 and y = d respectively, and rewriting in a
matrix form yields"
p
(0)
c;n(0)

p
(0)
c;n(d)

#
=

!2�c

n sinh 
nd

(30)

�

�
cosh (
nd) 1

1 cosh (
nd)

� �
w1;n

�w2;n

�
:

3.3. Solution of the cavity pressure field

The cavity reaction pressures used in (3–4) can then be
expressed as, if (30) is inserted in (20),

�
pc(x; 0)
pc(x; d)

�
=

 
1X
n=0

"nJn

�
w1;n

�w2;n

�
cos(n�x/l)

!
(31)

�

1X
m=�1

�(x;ml;ml + l) e�ikxml

where the following definitionJn of the matrix in equation
(30) has been introduced,

Jn �
!2�c


n sinh (
nd)

�
cosh (
nd) 1

1 cosh (
nd)

�
:

The displacement field in the plates is unknown, and needs
to be solved for. The components w i;n are expressed as
integrals in equation (26).

3.4. Fourier transform of the cavity pressure

The spatial Fourier transform of the cavity reaction pres-
sure is formally given in equation (21). Define a help func-
tion

�n(�) (32)

� Fx

(
cos
�n�x

l

� 1X
m=�1

�(x;ml;ml + l)e�ikxml

)

Then, the transformed cavity pressures at the boundaries
are�
~pc(�; 0)
~pc(�; d)

�
=

1X
n=0

�
J11;n J12;n
J21;n J22;n

��
w1;n

�w2;n

�
"n�n(�) (33)

where J11;n et cetera are the components of Jn. A more
suitable form of the function �n(�) is needed. Some ma-
nipulations, including use of the Poisson sum formula,
yields

�n(�)=
i�

l

1� ei�le�in�

�� n�/l

1X
m=�1

Æ (��kx+(n�2m) �/l)

+
i�

l

1� ei�lein�

�+ n�/l

1X
m=�1

Æ (��kx�(n+2m)�/l): (34)

For details see the appendix. Moreover, due to the infinite
sums, we have

1X
m=�1

Æ (�� kx + (�n� 2m)�/l)

=

1X
m=�1

Æ (�� kx � 2m�/l)

Thus, we can rewrite (34)

�n(�) =
2�

l
&n(�)

1X
m=�1

Æ (�� kx � 2m�/l) (35)

where

&n (�) � i�
1� ei�l(�1)n

�2 � (n�=l)2
(36)

Combining equations (33) and (35) yields the transformed
cavity reaction pressures�
~pc(�; 0)
~pc(�; d)

�
=

2�

l

1X
n=0

�
J11;n J12;n
J21;n J22;n

��
w1;n

�w2;n

�
"n&n(�)

�

1X
m=�1

Æ (�� kx � 2m�=l) : (37)

3.5. Pressure and displacement field in the cavity

The field inside a cavity is of interest. It is only necessary
to consider the 0’th cavity due to the periodic relation (2).
The pressure field in the 0’th cavity is given in (18) where
index m = 0 is to be used, and p

(0)
c;n is given in equation

(29). The corresponding displacement field in the cavity is

w(0)
c;x =

1

�!2

@ p
(0)
c

@ x
; w(0)

c;y =
1

�!2

@ p
(0)
c

@ y

for displacement in the x- and y-direction respectively.
Derivation of equation (18) yields

w(0)
c;x = �

1X
n=0

"n
n�

l
n

!2�c
sinh (
nd)

sin(n�x=l) (38)

� (w2;n cosh (
ny)� w1;n cosh (
n (d� y)))

w(0)
c;y =

1X
n=0

"n
!2�c

sinh (
nd)
cos(n�x=l) (39)

� (w2;n sinh (
ny) + w1;n sinh (
n (d� y)))

for the x- and y-direction respectively.

4. The remaining reaction forces

In order to get a complete solution, the forces and pres-
sures involved must be specified.
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1,n

K

Figure 3. The n’th beam.

4.1. The frame reactions

The continuity equation at each plate-beam connection
point is assumed to be spring-like and takes the follow-
ing form, if the displacement of the n’th beam equals the
displacement of the first plate, un(z) = w1(nl; 0; z), and

Q1;n (z)�Q2;n (z) = Gw1 (nl; 0; z) (40)

Q2;n (z) = K (w1 (nl; 0; z)� w2 (nl; 0; z)) (41)

where n = �1; � � � ;1, and where G is a linear operator,
K is a stiffness andQi;n are line forces. For the n’th beam,�

Q1;n (z)
Q2;n (z)

�
=

�
G +K K
K K

� �
w1 (nl; 0; z)
�w2 (nl; 0; z)

�
(42)

The linear operator corresponding to a Euler beam is

G = Ef If
d4

dz4
� �fAf!

2 (43)

where Ef If is the bending rigidity and �fAf is mass
per unit length of the frame. The y-deviates will be re-
placed by k4y due to the assumed e�ikyy dependency in
(1). Thus, the algebraic expression for transformed opera-
tor G is found,

G = Ef Ifk
4
z � �fAf!

2 (44)

The frame reaction pressure is

pfi =

1X
m=�1

Qi;nÆ (x�ml) ; (45)

for i = 1; 2. The displacement fields w1 and w2 satisfy
the periodicity relation (2) since the structure and driving
are periodic. Therefore

wi (nl) = wi (0) e
�inkxl; (46)

for i = 1; 2. Therefore, using (40–41) and (46), the re-
action fields caused by the beams, used in (3–4), can be
written�

pf1
pf2

�
=

�
G+K K
K K

� �
w1 (0; 0; z)
�w2 (0; d; z)

�
(47)

�

1X
m=�1

e�imkxlÆ (x�ml)

p
t
(x,y,z)

p
r
(x,y,z)

x

z

d
w

1
(x,y)

w
2
(x,y)

Figure 4. The acoustic pressure.

Fourier transform equation (47), and make use of the Pois-
son sum formula (A7–A8),�

~pf1
~pf2

�
=

2�

l

�
G+K K
K K

��
w1 (0; 0; z)
�w2 (0; d; z)

�
(48)

�

1X
m=�1

Æ (�� 2m�/l � kx)

4.2. The reactions from the transmitted and reflected
fields

The transformed versions of the operators R and T in
equations (6–7), denoted R and T respectively, is to be
determined. Consider Figure 4, where a fluid is occupying
the upper half space with an acoustic pressure ps(x; y; z),
z � 0, and the lower half space is occupied by a fluid with
an acoustic pressure pt(x; y; z), z � d. The total pressure
field in the incident side is pi + pg + ps, as was discussed
more closely in section 2. It is assumed that the two fields
have the same sound speed c0 and density �0. Two mov-
ing surfaces occupy the x-y-plane in z = 0 and z = d,
vibrating with displacements w1(x; y) and w2(x; y). The
total acoustic pressure field can be expressed as

p(x; y; z) =

�
ps(x; y; z) z � 0
pt(x; y; z) z � d

(49)

The acoustic pressure satisfies the Helmholtz equation�
@2

@x2
+

@2

@y2
� k2z

�
p+

!2

c20
p = 0 (50)

where c0 is the speed of sound and ! is the radian fre-
quency, together with the boundary conditions, the same
as in (14–15) but with ps in the former equation and pt
in the latter, ensuring equality of the fluid velocity at the
plate surface and the plate velocity. The Helmholtz equa-
tion (50) is now transformed, indicating a wave in the z-
direction. The solution can be written

~p(�; y) =

�
p̂re


y ; y < 0
p̂te

�
(y�d) ; y > d
(51)

assuming only outgoing waves, and where


2 � �2 + k2z � k2c
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where 
 has to be evaluated so that <f
g � 0,
=f
g � 0 if <f
g = 0. Therefore, using the boundary
conditions (14–15) together with the derivative of (51), for
z = 0 and z = d, yields the identification of the coeffi-
cients,

R = �T =
!2�


(�)
:

5. The inverse transform and the solution of the
problem

The solution to the problem can now be found by means
of applying the inverse Fourier transform on equation (10),
making use of equation (37) and (48). The Dirac functions
ensure that the inverse transform can be easily performed,
and the displacement field can thus be determined. The
displacements are

w1 (x) =
2p̂ie

�ikxx

S1 (kx)
(52)

�
1

l
((G+K)w1 (0)�Kw2 (0))T

(f)
1 (x)

�
1

l

1X
n=0

(J11;nw1;n � J12;nw2;n) "nT
(c)
1;n (x)

and

w2 (x)=
1

l
(Kw1 (0)�Kw2 (0))T

(f)
2 (x) (53)

+
1

l

1X
n=0

(J21;nw1;n � J22;nw2;n) "nT
(c)
2;n (x)

where the following abbreviations have been used

T
(f)
j (x) �

1X
m=�1

e�i�mx

Sj (�m)
(54)

T
(c)
j;n(x) �

1X
m=�1

&n (�m) e�i�mx

Sj (�m)
(55)

where �m = kx+2m�=l and where j = 1; 2. The w1(0),
w2(0) and the Fourier components are still unknown. To
determine them, let x! 0 in (52), for the first plate

w1 (0) =
2p̂i

S1 (kx)
�

(G+K)

l
T
(f)
1 (0)w1(0) (56)

+
K

l
T
(f)
1 (0)w2(0)�

1

l

1X
n=0

J11;n"nT
(c)
1;n (0) w1;n

+
1

l

1X
n=0

J12;n"nT
(c)
1;n (0) w2;n

and (53) for the second plate

w2 (0) =
KT

(f)
2 (0)

l
w1(0) (57)

�
KT

(f)
2 (0)

l
w2 (0) +

1

l

1X
n=0

J21;n"nT
(c)
2;n (0) w1;n

�
1

l

1X
n=0

J22;n"nT
(c)
2;n (0)w2;n:

Multiply (52–53) by 2=l cos(s�x=l) and integrate from 0
to l, s being an integer, in order to identify the Fourier
components, for the first plate

w1;s =
2

l

lZ
0

2p̂ie
�ikxx cos(s�x/l) dx

S1 (kx)
(58)

�
2 (G+K)

l2
I
(f)
1;s w1 (0) +

2K

l2
I
(f)
1;s w2 (0)

�
2

l2

1X
n=0

J11;n"nI
(c)
1;s;nw1;n +

2

l2

1X
n=0

J12;n"nI
(c)
1;s;nw2;n

and for the second plate

w2;s =
2K

l2
I
(f)
2;s w1 (0)�

2K

l2
I
(f)
2;s w2 (0) (59)

+
2

l2

1X
n=0

J21;n"nI
(c)
2;s;nw1;n �

2

l2

1X
n=0

J22;n"nI
(c)
2;s;nw2;n

where the following abbreviations have been used,

I
(f)
j;s �

lZ
0

cos(s�x/l)T
(f)
j (x)dx (60)

I
(c)
j;s;n �

lZ
0

cos(s�x/l)T
(c)
j;n (x)dx (61)

where i = 1; 2. The integrals are calculated in the ap-
pendix, as well as the integral in the first term in (58). A
system of equations can now be set and solved for w1(0),
w2(0) and the Fourier components, if truncating the co-
sine expansion to N components. The displacement com-
ponents to be solved for are arranged in a row vector

w =
�
w1 (0) w2 (0) w1;0 w2;0 ::: w1;N w2;N

�T
Defining a matrix A and a row vector P, se the appendix
(A9–A13), and solving for the displacement components
w yields

w = A�1
P (62)

Inserting these components in equation (52–53) gives the
displacement of the plates.

The solution can alternatively be written in a space har-
monic form,

w2 =

1X
m=�1

Wme�i�mx (63)



8 Author: J. Brunskog
Div. Engieering Acoustic

TVBA– 3119 (2002)

for the second plate (which is of interest in connection to
sound transmission), where

Wm =
�1

lS2(�m)

�
Kw1(0)�Kw2(0) (64)

+

1X
n=0

(J21;nw1;n � J22;nw2;n) "n&n(�m)

�

6. Exterior fluid fields and radiation

We have so far found expressions for the displacement
field of the plates. However, expressions for the reflected
and transmitted pressure fields are also needed, as well as
the radiated power per unit area and expressions for the
sound transmission.

6.1. Transmission and radiation

Transmission is now to be determined. The transmission
coefficient is defined as transmitted power divided by in-
cident power, or in the present infinite case as the trans-
mitted intensity divided by incident intensity,

� �
It
Ii

The total sound intensity radiated per unit area of the plate,
that is the sound intensity It in the direction normal to the
plate, is

It =
1

2
<fptv

�g (65)

which can be expressed as the sum of the sound intensity
radiated normal to the plate by each harmonic (v being the
velocity). Thus, if using the fact that v� = �i!w� and that
the radiated pressure can be written as a space harmonic
series, the transmitted sound intensity can be calculated.
Using the radiated pressure written as a space harmonic
series, similar to equation (63–64), Mace [12] derives the
radiated sound intensity as

It =
1

2
!3�

X
n2radiators

jWnj
2

j�nj
; (66)

where the sum is to be preformed over all the radiating
harmonics where �n 2 I, where I being the imaginary
numbers.

The incidence sound intensity normal to the plate is,

Ii =
1

2
<fpiv

�

i g (67)

where vi is the velocity in the normal direction of the in-
cident wave,

vi =
�1

i!�

@pi
@y

=
ky
!�

pi:

and thus for the incidence sound intensity

Ii =
1

2

<
�
k�y
	

!�
jpij

2 =
1

2

ky
!�

jpij
2: (68)

where the last step is only correct if the incident exciting
wave is a travelling wave.

From the relations (65–68) one may determine the
transmission efficiency �(�; ') for each incidence angle
� and '; the transmission efficiency is the ratio of the
transmitted/radiated sound intensity In;Rad to the incident
sound intensity In;In,

�(�; ') = It(�; ')=Ii(�; '): (69)

using equation (66) and (68), together with k y = k cos �,
yields

�(�; ') =
!4�2

k cos �jpij2

X
n2radiators

jWnj
2

j�nj
; (70)

The statistical transmission coefficient �s is found as

�s = hIt(�; ')i = hIi(�; ')i

where h�i denotes the mean. The statistical transmission
coefficient therefore becomes

�s =
1

�

2�Z
0

�=2Z
0

�n(�; ') sin � cos � d� d' (71)

and the transmission loss R dB is,

R = 10 log 1=�s dB: (72)

However, as the transmission loss is defined for all an-
gles of incidence, the integral over all possible angles are
needed, (71). This is a very time-consuming operation.
The angle of incidence is therefore chosen randomly in or-
der to approximate the integral over the incidence angles,
i.e., a Monte Carlo approach. The calculation is ended
when the maximum error (as compared to the last estimate
of �s) falls below a given number.

7. Numerical results and discussion

7.1. Data for the numerical examples

Consider a wall with 13 mm thick gypsum plates and
wooden studs (45�95 mm) and let the cavity not be filled
with mineral wool. The studs are separated with a distance
of l = 0:6 m. The bending stiffness of the gypsum plates
is taken to be D1 = D2 = 520 Nm, and the mass per unit
area m00

1
= M 00

2
= 10:9 kg/m2. Young’s modulus for the

beams is Ef = 9:8 � 109 Pa and the density for the beams
�f = 500 kg/m3. The speed of sound is c0 = 340 m/s
and density for air �0 = 1:29 kg/m3. Material damping
in the beams and plates are taken to be � = 0:03 added
to the Young’s modulus. Material damping in the air is
�air = 1 � 10�5. The stiffness in the frame coupling is
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Figure 5. Displacement of cavity field at f = 30 Hz . Snapshots
from the left: at t = 0 s, t = T=4 and t = T=2 s, T being the
period.
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Figure 6. Displacement of cavity field at f = 300 Hz. Snapshots
from the left: at t = 0 s, t = T=4 and t = T=2 s, T being the
period.

chosen to 1 � 1010 N/m2 as to have a rigid connection in
the frequency range of interest.

7.2. Displacement

The displacement of a grid of particles in the cavities is
magnified and shown in Figures 5–7. The system is ex-
cited by a incoming pressure wave with the wave num-
bers kx = k sin(55Æ), kz = 0. In Figure 5 the frequency
is f = 30 Hz. Two bays are shown and the solid lines
represent the plates. Snapshots are shown, from the left
representing the displacement at time t = 0 s, t = T=4
and t = T=2 s, T being the period. In this low frequency
example it can be noticed that the cavity is symmetri-
cally deformed even though the frequency is below the
first resonance. This observation appears contradictious to
the result in Cremer and Heckl [1, pp. 450–462], where

−0.1 0 0.1 0.2
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Figure 7. Displacement of cavity field at f = 3 kHz. Snapshots
from the left: at t = 0 s, t = T=4 and t = T=2 s, T being the
period.

a double plate system without mechanical point connec-
tors first moves in phase which each other, and then – for
frequencies above the first mass-spring-mass resonance –
moves out of phase. The explanation is that the reaction
fields caused by the beams are of opposite sign for the
two plates, as can be seen in equations (52–53). This fact
can also be seen in the next section in [1, pp. 462–474],
where the reaction field caused by a point connector is
of opposite sign in the second plate compared to the first
plate. And moreover, the total displacement is in-phase as
overall displacement of the wall (the rigid body motion) is
larger than the more local deformation of the plates rela-
tive to the beams. In Figure 6 is the same situation studied
at f = 300 Hz, and in Figure 7 at f = 3 kHz. In Figure 6
the displacement of the two plates is truly out of phase, as
the frequency is above the first resonance. The plate dis-
placement is continuous over the stud, but the cavity field
has a discontinuity, as clearly seen in the high frequency
example Figure 7. In the same figure the standing wave
motion in the x-direction is also noticeable.

7.3. Transmission loss

The transmission loss is now to be calculated for the con-
figuration described above. The transmission loss is cal-
culated according to section 6.1. The result is shown in
Figure 8, where also experimental results are shown for
the same wall (as taken from a measurement report from
the 1970’s found in the division archive). The agreement
is satisfactory if the rough material models, the infinite
description and the lack of moment coupling are taken
into account. For the calculated transmission loss curve
the troughs and peaks between 160 to 1600 Hz correspond
well with those found in the experimental curve.

In Figure 9 some variations from the base configuration
are shown (relative to the base configuration, as being the
one described in section 7.1). The effect of letting the stiff-
ness be zero, K = 0, is shown with circles (–Æ–). The two
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Figure 8. Transmission loss, –Æ– measurements and –+– calcula-
tions.
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Figure 9. Transmission loss difference relative the base configura-
tion,R�Rbase dB. Base configuration (–+–), zero stiffnessK = 0

(–Æ–), only the zero term present in cavity expansionN = 0 (–�–),
no bending stiffness and mass in beams (–2–).

plates are then mechanically uncoupled. No large effects
are seen (a little surprisingly), only about 2 dB are gained
in the frequency interval 250–3160 Hz. It should however
be noted that the airspace between the plates is quite thin
and undamped. The effect of only including the zero term
in the expansion of the cavity is also shown (–�–), which
is similar to having a locally reacting air cavity. Nor in this
case any large effects are seen; only an increase of about
1 dB above 250 Hz. Thus, the calculation time can be re-
duced without to much errors if reducing the number of
terms in the expansion. Moreover, the error of letting the
cavity field passing through the beams is probably minor
(at least for thin constructions and for third octave band fil-
trated transmission losses). The effect of ignoring the mass
and bending stiffness of the beams is also shown (–2–). A
small decrease at low frequencies (below 125 Hz) and a
larger decrease for frequencies above 1000 Hz is seen.

8. Concluding remarks

The paper has shown that it is possible to use a periodic
assumption and transform technique to include the effects
of finiteness when treating a double-plate wall with studs.

At frequencies below the first resonance, the displace-
ments of the plates are out of phase, if the displacement
relative to the beams is considered (that is if the rigid
body motion is subtracted). This is due to the reaction field
caused by the beams.

Comparison between measured and calculated results
shows satisfactory agreement, the troughs and peaks be-
tween 160 to 1600 Hz comparing well with those being
found in the experimental curve.

No large effects are noticed (for the present configura-
tion) if the mechanical coupling between the plates is re-
moved or if only the zero term in the cavity expansion is
used. The latter fact means that the calculation time can
be reduced without to much errors if reducing the number
of terms in the expansion and that the error of letting the
cavity field passing through the beams probably is minor.
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Appendix

We have the following help function from equation (32),

�n = Fx

�
cos (n�x=l)

1X
m=�1

e�ikxml

� (�(x�ml)� �(x � (m+ 1)l))

�

Define a new function

�m = Fx

�
cos (n�x=l) e�ikxml (A1)

� (� (x�ml)� � (x� (m+ 1) l))
	

so that

�n =
1X

m=�1

�m (A2)

Use the following identities

Fx f� (x� a)g = ei�a
�
�Æ (�)�

1

i"

�
(A3)

Fx

�
� (x� a) eibx

	
= ei(��b)a (A4)

�

�
�Æ (�� b)�

1

i (�� b)

�
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to rewrite �m

�m =
e�ikxml

2
Fx

n
� (x�ml) ein�x=l

� � (x� (m+ 1) l) ein�x=l + � (x�ml) e�in�x=l

� � (x� (m+ 1) l) e�in�x=l
o

=
e�ikxml

2

�
ei(��n�=l)ml

�
�Æ(� � n�=l)+

i

��n�=l

�

� ei(��n�=l)(m+1)l
�
�Æ(� � n�=l)+

i

��n�=l

��

+
e�ikxml

2

�
ei(�+n�=l)ml

�
�Æ(� + n�=l)+

i

�+n�=l

�

� ei(�+n�=l)(m+1)l
�
�Æ(� + n�=l)+

i

�+n�=l

��

Taking the limit �! �n�=l it can be shown that the am-
plitude of Dirac’s function equals zero. Thus, after some
rearrangement

�m = �
e�ikxmlei�ml

2

��
1� ei�le�in�

� e�inm�

i (�� n�/l)

+
�
1� ei�lein�

� einm�

i (�+ n�/l)

�
(A5)

Therefore, using (A2) and (A5)

�n = �
1

2i

�
1� ei�le�in�

�� n�/l

1X
m=�1

e�inm�ei(��kx)ml

+
1� ei�lein�

�+ n�/l

1X
m=�1

einm�ei(��kx)ml

�
(A6)

The Poisson sum formula can be used to show that

1X
m=�1

f(am) =
1

a

1X
q=�1

F

�
2q�

a

�
(A7)

which together with the rules for the Dirac function
Æ (�l) = Æ(�)=l implies that

1X
m=�1

ei(��kx)mle�in�m

=
2�

l

1X
m=�1

Æ (��kx+(n�2m)�/l) (A8)

The matrix components in (62) are

A11 = 1 +
(G+K)

l
T
(f)
1 (0)

A12 = �
K

l
T
(f)
1 (0)

A1n =

(
J11;n"n

l T
(c)
1;n (0) ; n odd

�J12;n"n
l T

(c)
1;n (0) ; n even

(A9)

and

A21 = �
K

l
T
(f)
2 (0)

A22 = 1 +
K

l
T
(f)
2 (0)

A2n =

(
�

J21;n"n
l T

(c)
2;n (0) ; n odd

J22;n"n
l T

(c)
2;n (0) ; n even

(A10)

and for odd s

As1 =
2 (G+K)

l2
I
(f)
1;s

As2 = �
2K

l2
I
(f)
1;s

Asn = Æsn +

(
2
l2 J11;n"n I

(c)
1;s;n ; n odd

� 2
l2 J12;n"n I

(c)
1;s;n ; n even

(A11)

and for even s

As1 = �
2K

l2
I
(f)
2;s

As2 =
2K

l2
I
(f)
2;s

Asn = Æsn +

(
� 2

l2 J21;n"n I
(c)
2;s;n ; n odd

2
l2 J22;n"n I

(c)
2;s;n ; n even

(A12)

The vector components in (62) are

P1 =
2p̂i

S1 (kx)
;

P2 = 0; (A13)

Ps =

8<
:

2�2p̂i
lS1(kx)

lR
0

e�ikxx cos(s�x/l)dx

0

; s odd
; s even

where the last expression is valid for s > 2, and where the
integral is

lZ
0

e�ikxx cos(s�x=l)dx = ikx
1� (�1)se�ikxl

(s�=l)2 � k2x

The integral in equation (60) is, using (54) and inter-
changing the integral and the sum

I
(f)
i;s =

1X
m=�1

Is(�m)

Si(�m)
(A14)

where

Is(�m) =

Z l

0

cos(s�x=l)e�i�mxdx (A15)

= i�m
1� (�1)se�i�ml

(s�=l)2 � �2
m

:
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The integral in equation (61) is, using (55) and interchang-
ing the integral and the sum

I
(c)
i;s;n =

1X
m=�1

&n(�m)
Is(�m)

Si(�m)
(A16)

where Is(�m) is evaluated according to (A15).
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Near-periodicity in acoustically excited stiffened plates and its
influence on vibration, radiation and sound insulation

Jonas Brunskog
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Summary
Due to variabilities in the material, the geometrical configuration, or the manufacturing properties, a structure that is
designed to be spatially periodic cannot be exactly periodic. The presence of small irregularities in a nearly periodic
structure may influence the propagation of the vibration field, the field being localised. A number of papers have
addressed such localisation phenomena. This paper will instead focus on the mean vibration field and its influence on
sound radiation and sound insulation in a plate stiffened by supports or beams. The approach is to seek a formal solution
with the aid of spatial transform technique (similar to the perfect periodic case) and then apply the expected value
operator to the solution. Two assumptions must then be introduced: I) The reaction forces are statistically independent
of a phase-term that is due to the irregularity, and II) the mean field is periodic. The approach is presented in general
terms, the specific configuration (a stiffened plate) being presented as an example. Numerical results are presented and
discussed, and it can be seen that the small irregularities cause an increase in stiffness and damping (when material
damping is present).

PACS no. 43.40.Dx, 43.55.Ti

1. Introduction

A structure designed to be spatially periodic in its config-
uration cannot be exactly periodic due to material, geo-
metrical, and manufacturing variabilities. The presence of
small irregularities in a nearly periodic structure may in-
fluence the propagation of vibration strongly and localise
the vibration field.

Anderson [1] described localisation phenomena for
nearly periodic systems in solid state physics, concerning
the transport of electrons in an atomic lattice (leading to a
Nobel Prize). Obviously, localisation also occurs in disor-
dered periodic structural systems, but its theoretical inves-
tigation is more difficult than that of a one-dimensional
atomic lattice, since governing equations for structural
systems are generally more complex. However, a number
of papers have been addressed to localisation phenomena
in such structures.

Hodges and Woodhouse [2] describe the theory and
some simple experiments carried out to demonstrate
the phenomenon of Anderson localisation in an acous-
tic/mechanical context. A simple chain of pendula coupled
by springs and a string with nearly equally spaced point
masses was studied. A perturbation method was used in
the statistical treatment and a localisation factor was calcu-
lated in the form of an exponential decay constant. Pierre
and Dowell [3] investigated the localisation of modes of
free vibration in discrete disordered structural systems
consisting of coupled subsystems. The degree of locali-
sation is dependent upon two parameters: the coupling be-
tween and the mistuning among the component systems.
Perturbation methods are used for slightly disordered sys-
tems because they are cost effective. At the same time,
they lead to very accurate results for small perturbations.
Cai and Lin [4] treated a one-dimensional, nearly periodic

system using transfer matrixes. The localisation factor was
defined as the limit of the logarithm of the transmission
part in the random matrixes. Thus, transmitted waves have
an average exponential decaying rate. Other papers on the
subject of localisation of free wave propagation in nearly
periodic structures can be found in reference [5], contain-
ing a survey of periodic and nearly periodic solution tech-
niques.

In problems concerning sound-insulation in dwellings,
for example, the excitation of the system can be seen as
a superposition of spatially harmonic pressure fields. The
system will then vibrate and radiate sound in the receiver
room.

None of the foregoing papers concerning nearly peri-
odic systems deal with the questions of acoustical exci-
tation or radiation. Whether the localisation phenomena
influence these problems is still an open question. More-
over, the analysis methods described are not suited for this
type of problem; they consider free wave propagation or
excitation in one bay and propagation in the rest of the
system. Another problem with the analysis methods de-
scribed is that they are only suited for one-dimensional
problems and therefore not suited, for example, for sys-
tems built up by plates [5].

This paper will instead focus on the mean vibration field
caused by spatial harmonic excitation and its influence on
sound radiation in a plate stiffened by supports. The local-
isation factor found in the cited literature can be seen as a
virtual damping. The aim of this paper is to investigate if
additional damping, in an average sense, also is found for
spatially harmonic driven systems, and if this can be noted
in the sound insulation. This problem is important in the
fields of structural and building acoustics. However, the
approach is also suited for evaluation of the free waves, so
this will also be studied (briefly). The paper is comprised
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as follows: First, the general equations formulated and the
considerations needed are stated. Then the solution tech-
nique for the perfectly periodic case is presented. There-
after, the solution technique for the nearly periodic case –
the main issue of the paper – is stated, including statistical
considerations. The radiated sound and sound-insulation
are then investigated. The numerical results are presented
and analysed. The paper ends with summary and conclu-
sions.

2. General considerations and formulations

The main idea of the solution technique in the present pa-
per is to use a method similar to the one used in the per-
fectly periodic case, but to solve for the mean displace-
ment field. This is achieved by applying the expected value
operator E[�] to the formal version of the solution. There
are two main assumptions in this approach that the reader
should be aware of: I) It is assumed that the reaction forces
are statistically independent of the harmonic term e i�'n ,
where 'n is the divergence from perfect periodicity and
� is the transform wavenumber and II) It is assumed that
the mean field (displacement and force) is periodic. The
assumptions are recognized to be reasonable, but they are
not proven. However, as can be seen in the simulations
in section 6.3, the result is not exactly the same as the en-
semble average; there is a discrepancy between the nearly-
periodic estimation of the expected value and the mean of
the Monte Carlo simulations.

The theory will be presented in general terms, the spe-
cific examples involving plate systems being presented in
examples in separate subsections. It is hoped that the gen-
erality of the approach can be seen in this way.

2.1. Introduction to the solution technique

This section will introduce the spatial Fourier transform
technique and the concept of general linear differential op-
erators. Consider a linear differential operator S[�]. An in-
homogeneous differential equation can then be written

S[w(x)]ei!t = p(x)ei!t (1)

for a time harmonic displacement, where the time har-
monic term ei!t is henceforth suppressed. In equation
(1) w can be a displacement and p a pressure field. The
Fourier transform pair – with the transform variable � –
for an arbitrary function g(x) is defined as

g(x) =
1

2�

1Z
�1

~g(�) e�i�xd�; (2)

~g(�) =

1Z
�1

g(x) ei�xdx; (3)

where ~� is used to denote transformed field variables.
Fourier transform the equation (1)

S(�) ~w(�) = ~p(�) , ~w(�) = ~p(�)=S(�)

where S is the transformed version of the operator in (1).
The inverse Fourier transform is

w(x) =
1

2�

1Z
�1

~p(�)

S(�)
e�i�xd�: (4)

If a z-dependency also is present, an extra transform-pair
in this direction is superimposed on the expressions in
(2–4) (except when a dependency of the form e�ikzz is
present, which directly can be suppressed).

2.2. Examples

As an example to be used in this report, take the linear dif-
ferential operator in (1) to be that of a thin plate in bend-
ing,

S[w] = D0��w � !2m00w ; (5)

S = D0
�
�2 + k2z

�2 �m00!2 (6)

where

�� =

�
@2

@x2
+

@2

@z2

�2

and where kz is the excitation wavenumber in the z-
direction, w is the displacement, D 0 is the bending stiff-
ness and m00 is the mass per unit area. The influence
of fluid loading is neglected, except in case of sound-
insulation, see section 5. In order to simplify, set kz = 0
(where not said differently).

Another example could be the Helmholtz equation for
an acoustic fluid together with an excitation or incident
pressure (and boundary conditions), in one, two or three
dimensions.

3. Exact periodicity

When the periodicity is perfect, the solution can be found
with methods similar to Mace [6]. This approach is de-
scribed in the present section, so that a similar theory can
be used for the nearly periodic case in section 4.

3.1. Formulation

First, let the system be exactly periodic in the co-ordinate
x (the other co-ordinates are assumed to be in the form
e��y�ikzz and suppressed),

S[w(x)] = pd(x)�
1X

n=�1

FnÆ(x� nl) (7)

The driving part of the equation is due to a driving periodic
pressure pd,

pd = p̂de
�ikxx; ~pd = 2�p̂dÆ(�� kx)
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and a periodic set of reaction forces Fn. These reaction
forces are due to a periodic set of boundary conditions lo-
cated at the positions x = nl. Thus, the reaction forces Fn

are to be chosen so that the boundary condition at the pe-
riodic boundaries is fulfilled. The periodicity implies that
Floquet’s principle is valid, which in the present case can
be written:

w(x+ nl) = w(x)e�ikxnl ) Fn = F0e
�ikxnl (8)

where kx is given from the driving force pd. Thus equation
(7) is written, if using equation (8) and then applying the
Fourier transform

S ~w (�) = ~pd(�)� F0

1X
n=�1

e�ikxnlei�nl: (9)

Poissons sum formula [7] states that

p
a

1X
n=�1

g(na) =

r
b

2�

1X
n=�1

~g(nb) (10)

where ab = 2� and ~g(k) is the Fourier transform of the
arbitrary function g(x). This relation gives for the reaction
part of equation (9), if using the rules for the Dirac’s delta
function,

1X
n=�1

e�ikxnlei�nl =
2�

l

1X
n=�1

Æ (�� kx � 2n�/l) (11)

which simplifies the inverse transformation.

3.2. Solution

The solution is then found by means of inserting (11) and
~pd in (4), and then evaluating the integrals, yielding the
displacement

w(x) = w1 (x)� F0T (x) ; (12)

where

w1 (x) � p̂d
S(kx)

e�ikxx ; (13)

T (x) � 1

l

1X
n=�1

e�i(kx+
2n�
l )x

S (kx + 2n�/l)
: (14)

This formulation is similar to Mace [6]. The sum coverage
rapidly due to S(�) / �q as � ! 1, q being the order
of the operator (q = 4 in case of a plate), and is therefore
suited for truncation. However, the sum can in many cases
be given in a closed form.

The displacement can also be regarded as a series of
space harmonic type,

w(x) =

1X
n=�1

Wne
�i(kx+2n�=l)x (15)

where the coefficients can be identified as

Wn =
p̂d

S(kx)
Æ0n � F0(kx)

lS(kx + 2n�=l)
; (16)

where Æ0n is the Kronecker delta; Æ0n = 1 if n = 0, else
Æ0n = 0.

3.3. Reaction forces

The reaction force is determined by the boundary con-
dition: For Dirichlet conditions w(nl) = wbc, which in-
serted in (12) gives

F0 =
wbc � w1(0)

T (0)
: (17)

For Neumann conditions Fn = Fbc, which directly gives

F0 = Fbc: (18)

For Robin (mixed) conditions

w(nl) +KbcFn = wbc

which inserted in (12) gives

F0 =
wbc � w1(0)

T (0)�Kbc:
(19)

Boundary conditions of higher degree (e.g., dipoles, mo-
ments) can be introduced in a similar way [8, 6].

If the plate is reinforced by beam, the reaction force is
determined as [9, 6, 10] F0 = Gw(0) which inserted in
(12) gives

F0 =
Gw1(0)

1 + GT (0) ; (20)

where the differential operator G describes the deflection
of a Euler beam due to a line force,

G = EI@4=@z4 �m0!2

Where not said differently, a homogeneous Dirichlet
condition w(nl) = 0 is henceforth assumed.

3.4. Free wave propagation

As the excitation pressure pd tends to zero, the solution
(12) reduces to

w(x) = �F0T (x); (21)

the boundary condition (homogeneous Dirichlet condition
assumed) reduces to w(0) = 0 = �F0T (0), and thus the
plate displacement is nonzero only if

T (0) = 0; (22)

as also F0 is nonzero. This relation yields the proper wave-
number � $ kx, that is being purely real for travelling
waves – corresponding to pass-bands – and purely imagi-
nary for decaying waves – corresponding to stop-bands.
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 p
d

 y
 x  l

Figure 1. The structure under consideration, a supported plate, p d

being the driving pressure and l being the spacing.

3.5. A supported plate, part I

Consider a plate resting on equally spaced simple sup-
ports, Figure 1. Take the linear differential operator in (1)
to be that of a thin plate in bending, equation (5). Let the
driving pressure be a space harmonic force,

pd = e�ikxx ; ~pd = 2�Æ (�� kx) :

Moreover, let the boundary condition be the homogenous
Dirichlet condition, w(nl) = 0, i.e., simply supported.
Material damping can be introduced as a complex bend-
ing stiffness D0 � (1 + i�), � being the damping. Thus, the
solution is found to be

w1(x) =
e�ikxx

D0k4x �m00!2
; (23)

and

T (x) =
1

l

1X
n=�1

e�i(kx+2n�=l)

D0 (kx+2n�/ l)
4 �m00!2

: (24)

An explicit expression for this sum is given in [6]. The
boundary condition w(nl) = 0 yields according to equa-
tion (17)

F0 = w1(0)=T (0): (25)

The free wave propagation is examined by means of
equation (22). Thus

T (0) =
1

l

1X
n=�1

1

D0 (�+2n�=l)4 �m00!2
= 0: (26)

where � fulfilling (26) is solved for.

4. Near-periodicity

Consider a small divergence 'n from the exact periodic
formulation, Figure 2, the divergence being assumed to be
associated with the location of the reaction forces. It is as-
sumed that the divergence can be described as a stochastic
variable with a given statistical distribution.

 ϕ 
n

 δ( x−nl−  
n
) ϕ

 nl

Figure 2. The location of the reaction force is assumed to be stochas-
tic, 'n being the divergence from the periodic position nl, the ar-
row representing the reaction force in terms of a Dirac delta, and the
curve indicating a probability density function for ' n.

4.1. Formulation

In terms of the differential equation (1), the nearly periodic
version can be written

S[w(x)] = pd(x)�
1X

n=�1

FnÆ(x� nl � 'n) (27)

where 'n is the stochastic number (in a given distribu-
tion). Assume the standard deviation �' to be small com-
pared to the average spacing, �' << l. Each 'n is as-
sumed to be statistically independent of the other 'm,
m 6= n. In this case we have no general periodic descrip-
tion. However, it can be assumed that the field is close to
the field in the periodic case. Thus, proceed in the same
way as in section 3. The Fourier transform of the driving
part is

~pd(�)�
1X

n=�1

Fne
i�'nei�nl; (28)

the stochastic divergence from periodic spacing being
found as a phase disturbance.

4.2. Approaching the solution

Insert (28) in (4)

w(x) =
1

2�

1Z
�1

~pd(�)

S(�)
e�i�xd� (29)

� 1

2�

1Z
�1

1X
n=�1

Fn
e�i�(x�nl�'n)

S(�)
d�

The yet unknown parameters Fn can be found by the
boundary conditions at x = ml + 'm, leading to an in-
finite set of equations (if the 'm’s are explicitly chosen),

w(ml+'m) = w1(ml+'m)�
1X

n=�1

FnCnm(30)
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(combined with the boundary conditions in section 3.3)
where

Cnm =
1

2�

1Z
�1

e�i�((m�n)l+'m�'n)

S(�)
d�: (31)

This infinite set of equations has to be truncated in order
to be solved. However, this approach is not the main ap-
proach in the present paper, it is only to be used for com-
parison purposes in section 6.3.

4.3. Statistical considerations

Instead of solving the problem exactly for a given con-
figuration, we try to take the expected value of the nearly
periodic displacement. The expected displacement field,
�w(x) = E [w(x)] , is

�w(x) =
1

2�

1Z
�1

~pd(�)

S(�)
e�i�xd� (32)

� 1

2�

1Z
�1

E

"
1X

n=�1

Fne
i�'nei�nl

S(�)

#
e�i�xd�

Thus, the expected value is taken on a sum of functions
of independent stochastic variables. The rules for the ex-
pected value operator can be used to show that

E

"
1X

n=�1

Yn(�n)

#
=

1X
n=�1

E [Yn(�n)]

where Yn(�n) is a function of a stochastic variable �n and
correspond to the terms in the sum, and �n is the n-th
independent stochastic variable. Thus, the expected value
can be taken at each term using

E [Yn(�n)] =

Z



f�nYn(�n)d�n (33)

where f� is the distribution density function and 
 is the
domain of the given distribution. Thus, in the present case

E

"
1X

n=�1

Fne
i�'nei�nl

S(�)

#
=

1X
n=�1

E
�
Fne

i�'n
�
ei�nl

S(�)
:

The reaction force is a function of all stochastic variables
' = f'ng,

Fn = Fn (') :

However, if the reaction force is statistically independent
of the harmonic term ei�'n , the expectation of the reaction
force can be separated from the harmonic term. It is hereby
assumed that this is the case, and thus

E
�
Fne

i�'n
� � �FnE

�
ei�'n

�
(34)

It can now also be assumed that the expected displacement
and force field is periodic, and therefore, using (8)

�Fn = �F0e
�ikxnl: (35)

4.4. Continuing the solution

Equation (32) can now be written

�w(x) = w1(x)� �F0 �T (x) (36)

where the notation

�T (x) =
1

2�

1Z
�1

�(�)

S(�)
e�i�x

1X
n=�1

ei(��kx)nld� (37)

�(�) = E
�
ei�'n

�
; (38)

has been introduced.
As before, the sum in (37) is replaced by means of Pois-

son’s relation (10), so that the integration is easily per-
formed, yielding

�T (x) =
1

l

1X
n=�1

�(kx + 2n�=l)e�i(kx+2n�=l)x

S(kx + 2n�=l)
(39)

The mean displacement can also be regarded as a series
of space harmonic type,

�w(x) =

1X
n=�1

�Wne
�i(kx+2n�=l)x (40)

where the coefficients can be identified as

�Wn =
p̂d

S(kx)
Æ0n �

�F0(kx)�(kx + 2n�=l)

lS(kx + 2n�=l)
; (41)

where Æ0n is the Kronecker delta.

4.5. Boundary conditions and reaction forces

The yet unknown parameter �F0 can be found by boundary
conditions at n = 0 in agreement with section 3.3. How-
ever, in order to avoid the assumption that the boundary
condition also applies to the mean field, equation (36) is
not used as a basis to determine �F0. Instead, from (29–31)
we have for the 0’th support,

w(0+'0) = wbc = w1(0+'0)�
1X

n=�1

FnCn0:(42)

where it should be noted that the boundary condition w bc

is a given value not affected by the stochastic numbers.
Apply the expected value operator to equation (42),

wbc = E[w1('0)]�
1X

n=�1

E[FnCn0]: (43)
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The first term is, if we use the notation E[e�i�'0 ] =
E[ei�'n ] = �(�),

E[w1('0)] = �w1 =
1

2�

1Z
�1

~pd(�)

S(�)
E[e�i�'0 ]d�

=
1

2�

1Z
�1

~pd(�)

S(�)
�(�)d�: (44)

The term in the sum is, if it is assumed that Fn is statisti-
cally independent of the harmonic term e i�'n , and thereby
also of Cn0,

E[FnCn0] � �FnE[Cn0] = �F0e
�ikxnlE[Cn0];

where

E[Cn0] = �Cn0 =
1

2�

1Z
�1

E
�
ei�('n�'0)

�
ei�nl

S(�)
d�: (45)

The statistical independency implies then

E
h
ei�('n�'0)

i
= E

�
ei�'n

�
E
�
e�i�'0

�
= �2(�); (46)

the last equality being due to the fact that all the 'n have
a zero mean and equal spread. Thus

�Cn0 =
1

2�

1Z
�1

�2(�)ei�nl

S(�)
d�; (47)

and the mean reaction

wbc = �w1(0)� �F0

1X
n=�1

e�ikxnl �Cn0 (48)

= �w1(0)�
�F0
2�

1Z
�1

�2(�)

S(�)

1X
n=�1

ei(��kx)nld�

As before, the sum is replaced by means of the Poisson’s
relation in (11), yielding

�F0 =
wbc � �w1(0)

�T0
; (49)

�T0 =
1

l

1X
n=�1

�2(kx + 2n�=l)

S(kx + 2n�=l)
(50)

where it should be noted that �T0 6= �T (0).

4.6. Uniformly distributed locations

The mean of the harmonic term, �(�), is now to be found.
Take 'n to be a stochastic number, uniformly distributed
in the range'n 2 f�a; ag. The corresponding probability
density function f' is given as

f'(x) =

�
1
2a if x 2 f�a; ag

0 otherwise
(51)

Thus, the expected value of the harmonic term (38) is

�(�) = E
�
ei�'n

�
=

1

2a

aZ
�a

ei�'nd'n (52)

=
sin(�a)

�a
� sinc (�a)

where the last step is the definition of the sinc-function.

4.7. Gaussian distributed locations

Take 'n to be a stochastic number, this time Gaussian dis-
tributed in the range 'n 2 f�1;1g, and with a zero
mean value and a standard deviation �. The correspond-
ing probability density function f' is given as

f'(x) =
1

�
p
2�

e�
x2

2�2 (53)

Thus, the expected value of the harmonic term (38) in this
case is

�(�) = E
�
ei�'n

�
(54)

=
1

�
p
2�

1Z
�1

e�
'2n
2�2 ei�'nd'n = e�

(��)2

2

4.8. A supported plate, part II

Consider the same example as in the previous section.
Therefore, from (23)

�w(x) = w1(x)� �F0 �T (x) ;

w1(x) =
e�ikxx

D0k4x �m00!2
:

Consider first the uniformly distributed case. The sum is
calculated from (24) and (52),

�T (x) =
1

l

1X
n=�1

sinc

�
kxa+

2n�a

l

�
(55)

� e�i(kx+
2n�
l )x

D0 (kx + 2n�/l)4 �m00!2

and then the Gaussian distributed case. The sum is calcu-
lated from (24) and (54),

�T (x) =
1

l

1X
n=�1

e�
(kxl+2n�)2�2

2l2 (56)

� e�i(kx+
2n�
l )x

D0 (kx + 2n�/l)
4 �m00!2

:

These expressions will be evaluated in a numerical exam-
ple in section 6.

The correctness of the solution technique described will
be checked by means of solving the infinite system of
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equation (30) for a specific choice of '. Thus, the matrix
components (31) are in the present example

Cnm =
1

2�

1Z
�1

ei�('n�'m)

D0�4 �m00!2
e�i�(m�n)ld�; (57)

an explicit expression being given in equation (A8) in the
Appendix.

The free wave propagation is examined by means of
equation (22), which in the present case reduces to �T0 = 0,
as F0 is non-zero. Thus, by means of (52),

�T0 =
1

l

1X
n=�1

sinc2
�
�a+ 2n�a

l

�
D0 (�+2n�=l)

4 �m00!2
= 0: (58)

for the uniformly distributed case, the corresponding equa-
tion for the Gaussian distributed case is found by means of
(54), and where � is solved for in both cases.

5. The radiated field and sound insulation of the
supported plate

Consider once again the example in the previous sections,
a plate resting on simple supports. The vibration of the
plate will cause acoustic radiation on the side opposite to
the excitation, denoted transmitted pressure field. If equa-
tions (15–16) and (40–41) for the periodic and the nearly
periodic case respectively are taken as an standpoint, the
transmitted pressure component for each space harmonic
is

P (t)
n = �!2�

�n
Wn; �P (t)

n = �!2�

�n
�Wn (59)

where as before �(�) = E
�
ei�'n

�
is present in �Wn, and

where

�2n = (kx + 2n�=l)2 + k2z � k2

where k = !=c0 is the wavenumber in the fluid, and where
�n has to be evaluated so that

<f�ng � 0; =f�ng � 0 if <f�ng = 0 :

and further, the incident wavenumbers are

kx = k sin � cos';

kz = k sin � sin'; (60)

ky = k cos �:

The angle falls in the regions 0 � � < 2� and 0 � ' <
�=2.

It is important here that the radiation load is present in
the space-harmonic terms Wn and �Wn. Thus, for the case
of supported plate, the spatial stiffness (6) to be used is

S(�) = D0(�2 + k2z)
2 �m00!2 (61)

� 2�0!
2=
p
�2 + k2z � k2;

where the last term is due to the radiation load, c.i. [6, 9,
10] and also [11, pp. 544–545].

The transmitted pressure is then given by the series

�pt(x; y; z) =

1X
n=�1

�P (t)
n e�i(kx+2n�=l)x�ikzze��ny: (62)

in the nearly periodic case (and in the periodic case the
corresponding equation with pt and Pn).

The total sound power radiated per unit area of the plate,
that is the sound intensity In;Rad in the direction normal
to the plate (index n stands for normal), is

In;Rad =
1

2
<f�pt�v�g (63)

which can be expressed as the sum of the sound intensity
radiated normal to the plate by each harmonic. Thus, if
using equations (15–16) and (40–41) for the periodic and
the nearly periodic case respectively, together with (59)
and v� = �i!w�,

In;Rad =
1

2
!3�

X
n2radiators

j �Wnj2
j�nj ; (64)

where the sum is to be performed over all the radiating
harmonics �n 2 I, where Ibeing the imaginary numbers
(and in the periodic case the corresponding equations with
pt and Wn are to be used).

The incidence sound intensity normal to the plate is

In;In =
1

2
<fpiv�i g (65)

where pijy=0 = pdjy=0=2 is the incident pressure and
vi is the velocity in the normal direction of the incident
wave, if assuming a incidence wave of the form p i =
p̂ie

�i(kxx+kyy+kzz),

vi =
�1
i!�

@pi
@y

=
ky
!�

pi:

and thus for the incidence sound intensity

In;In =
1

2

<�k�y	
!�

jpij2 = 1

2

ky
!�
jpij2: (66)

where the last step is only correct if the incident exciting
wave is a travelling wave.

From the relations (63–66) one may determine the
transmission efficiency �(�; ') for each incidence angle �
and '; the transmission efficiency is the ratio of the trans-
mitted/radiated sound intensity In;Rad to

the incident sound intensity In;In,

�(�; ') = In;Rad(�; ')=In;In(�; '): (67)

using equation (64) and (66), together with k y = k cos �,
yields

�(�; ') =
!4�2

k cos �jpij2
X

n2radiators

j �Wnj2
j�nj ; (68)
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Figure 3. Magnitude of velocity due to pressure excitation, x =
2l=3 m and l = 1 m, low frequencies. Periodic (—), unsupported
plate (- � -) and nearly periodic: uniformly distributed (- - -) and
gaussian distributed (� � �).

The statistical transmission coefficient �s is found as

�s = hIn;Rad(�; ')i = hIn;In(�; ')i
where h�i denotes the mean. The statistical transmission
coefficient therefore becomes

�s =
1

�

2�Z
0

�=2Z
0

�n(�; ') sin � cos � d� d' (69)

and the transmission loss R dB is,

R = 10 log 1=�s dB: (70)

6. Results: numerical examples

6.1. Numerical data

As a numerical example, consider the plate to be a chip-
board plate whit Young’s modulus E = 4:6 � 109 N/m2,
density � = 650 kg/m3, damping � = 0:03 and thickness
5 mm. The periodic length is l = 1 m. For the excitation
field gracing incidence is assumed, that is � = �=2 and
kx = k sin �.

6.2. Vibration response of acoustic excitation

The magnitude of the vibration velocity is plotted in Fig-
ures 3 and 4. Four different cases are studied; periodic,
nearly periodic with uniform distribution, nearly periodic
with Gaussian distribution and the same plate without the
supports. The numbers of spread is set to a = � = 0:05 � l.
The calculations is performed for the position x = 2l=3.
Also the positions x = l=4 and l=2 were studied with sim-
ilar result (but not presented here). In Figure 3 the fre-
quency region is taken from 10 to 1000 Hz, with a fre-
quency resolution of 0.1 Hz, whereas in Figure 4 the fre-
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Figure 4. Magnitude of velocity due to pressure excitation, x =
2l=3 m and l = 1 m, high frequencies. Periodic (—), unsupported
plate (- � -) and nearly periodic: uniformly distributed (- - -) and
gaussian distributed (� � �).
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Figure 5. Magnitude of velocity due to pressure excitation, x=0.67
m. First peak in Figure 3. Uniform distribution in case of nearly
periodicity. Periodic (—), nearly periodic: a = 0:01l (� � �), a =
0:05l (- - -), a = 0:1l (-�-), a = 0:15l (-Æ-).

quency region taken from 1000 to 5000 Hz, with the same
frequency resolution.

In Figure 5 the first peak in Figure 3 is studied more
closely. The frequency region is taken from 10 to 20 Hz,
with a frequency resolution of 0.01 Hz. The position is
x = 2l=3 m. Five different cases are studied: the peri-
odic case and four cases with uniform distribution with
increasing spread. The number of spread is taken to be
a = f0:01l 0:05l 0:1l 0:15lg.

In Figure 6 and 7 another peak in Figure 3 (the fourth
peak from the left) is studied. The frequency region is
taken from 90 to 150 Hz, with a frequency resolution of
0.01 Hz. The position is x = 2l=3. In Figure 7 the damp-
ing is set to zero, � = 0. The number of spread is taken to
be a = f0:01l 0:05l 0:1l 0:15lg.
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Figure 6. Magnitude of velocity due to pressure excitation, x=0.67
m. Fourth peak in Figure 3. Uniform distribution in case of nearly
periodicity. Periodic (—), nearly periodic: a = 0:01l (� � �), a =
0:05l (- - -), a = 0:1l (-�-), a = 0:15l (-Æ-).
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Figure 7. Magnitude of velocity due to pressure excitation, x=0.67
m, no damping. Fourth peak in Figure 3. Uniform distribution in
case of nearly periodicity. Periodic (—), nearly periodic: a = 0:01l
(� � �), a = 0:05l (- - -), a = 0:1l (-�-), a = 0:15l (-Æ-).

6.3. Correctness check by means of Monte Carlo
simulations

The correctness of the present formulation is checked by
means of Monte Carlo simulations. For each simulation a
specific set of'n is chosen randomly according to the uni-
form distribution. The reaction forces is then determined
from the system of equations (30), which is truncated with
an equal number of support present on both sides of the
0’th support. (The truncation is checked by means of com-
paring with the perfect periodic case, and 50 supports on
each side are sufficient for this use). The resulting sys-
tem of equation is solved, yielding the reaction forces Fn,
including F0. The result of one simulation is denoted a

10 20 30 40 50
10

−2

10
−1

10
0

10
1

 F
0 N

frequency f [Hz]

Figure 8. Force F0. Correctness check by means of Monte Carlo
simulations. Solid line (—) nearly periodic case �F0 using equation
(49), dashed line (- - -) ensemble mean of the simulations using
equations (30–31), dotted line (� � �) is the perfectly periodic case
using equation (17).

sample function, and belongs to the solution space of the
problem.

This procedure is then repeated a large number of times,
so that the ensemble average converges (3200 sample
functions was used in the examples). The result for the
0’th reaction force F0 is shown in Figure 8.

As there is a disagreement between the nearly periodic
case and the ensemble mean of the simulations, another
approach is also used: That is to determine which of the
sample functions determined by the simulations is most
‘similar’ to the other sample functions. This is determined
by means of the least squares method. Thus, a least-square
integral is defined as

Qnm =

Z fmax

0

jFmc
0 (f)jn � Fmc

0 (f)jmj2 df: (71)

The sample function that has the minimum least square
sum are then sorted out,

min

NX
m=0

Qnm (72)

where N is the number of simulations (N = 3200 in the
present example), and the resulting sample functions will
be denoted the ‘median’ sample functions. It should be
noted that this function belongs to the function space of
the problem but the ensemble average do not belong to the
function space. The comparison between the nearly peri-
odic case, the perfectly periodic case, the ‘median’ case
using equations (71–72) and the ensemble average of the
‘median’ from 50 simulations is shown in Figure 9.

6.4. Free wave propagation

Free wave propagation is examined by means of solving
the dispersion relations (26) and (58) for the periodic and
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Figure 9. Force F0. Correctness check by means of Monte Carlo
simulations. Solid line (—) nearly periodic case �F0 using equation
(49), dash-dotted line (- � -) is the ’median’ case using equations
(71–72), dashed line (- - -) ensemble mean of the ’median’ from
50 simulation, dotted line (� � �) is the perfectly periodic case using
equation (17)
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Figure 10. Frequency variation of propagation number �, periodic
<� (—), periodic =� (- - -), nearly periodic <� (� � �), nearly peri-
odic =� (- � -)

nearly periodic case respectively, by means of a simplex
optimization routine; the minimal value of j �T0j and jT (0)j
is searched for in the complex �-plane. The result is ex-
amined in Figure 10 for the case with no wave-motion in
the z-direction, that is for kz = 0, which is equivalent to a
beam on supports. This figure can be compared with [11,
pp. 419], Figure V/27.

When wave-propagation also is present in the z-
direction, kz is nonzero. Then each pair of f and kz will
yield a �. This will however not be presented here, as no
further insight will be gained.
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Figure 11. Transmission loss R = 10 log 1=�s dB for the periodic
case (� � �), the nearly periodic case (—) and the unsupported plate
case (- � -).
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Figure 12. Increase in transmission loss�R = R�R1 dB for the
periodic case (� � �) and the nearly periodic case (—).

6.5. Radiation and sound-insulation

The effects that near-periodicity in the supported plate
have on sound-radiation and especially on sound-
insulation are investigated by means of the results pre-
sented in section 5. The result is shown in Figure 11,
where the transmission loss R = 10 log 1=�s dB is pre-
sented for the periodic case, the nearly periodic case, and
the unsupported plate case. In Figure 12the same data are
shown normalized with respect to the unsupported case
(denotedR1 dB). It should be noted that in both figures a
spline interpolation has been applied between calculation
points in order to save calculation time.
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7. Analysis

The effects of near-periodicity are analysed and com-
pared to the perfect periodic case in this section. The gen-
eral observation is: The nearly periodic case follows the
perfectly periodic case but with peaks and dips slightly
shifted to higher frequencies and more damped, the effect
of the near-periodicity being increased with increasing fre-
quency.

The tendency in the numerical examples shown in Fig-
ures 6–7 is that increasing the amount of irregularity shifts
the peaks to increasing frequencies and in most cases de-
creases the height of the peaks. It can therefore be con-
cluded that the irregularities increase the stiffness and
damping in the expected vibration field if material damp-
ing is present. If material damping is not present, the irreg-
ularities increases only the stiffness, as shown in Figure
7. For increasing frequencies the nearly periodic veloc-
ity versus frequency curves tend to be more damped and
closer to the unsupported plate, as shown in Figures 3 and
4.

In Figure 8 the ensemble mean of a large (3200) num-
ber of simulations for the 0’th support force is compared
to the nearly periodic and the periodic results. There is a
disagreement between the results; the ensemble mean is
more damped and has more peaks than the nearly periodic
result. However, the tendency is the same and the ensem-
ble mean result is clearly closer to the nearly periodic re-
sult than to the periodic result. (This was also investigated
by means of the least squares method using an integral
similar to (71), and the result was that the sample func-
tions were always closer to the nearly periodic curve than
to the perfect periodic curve.) The disagreement is due to
the assumptions stated in the beginning of section 2. The
first assumption, that the reaction forces are statistically
independent of the harmonic term e i�'n is most likely to
be the cause to the disagreement. To make the proposed
approach better, there must be a better assumption here.

In Figure 10 the possible choices of wave-number � for
free wave propagation is presented. The same tendency
as before can be noted: in the nearly periodic case has �
slightly shifted towards higher stiffness and higher damp-
ing.

In Figures 11 and 12 the sound-insulation transmission
loss is shown. The same tendency as before is also noted in
these examples; the stiffness and damping has increased in
the nearly periodic case in relation to the perfect periodic
case, and the tendency is more predominant for increasing
frequencies; the nearly periodic case tends to the unsup-
ported plate case. However, no conclusion can be drawn
from these examples as to whether the nearly periodic case
provides better sound insulation than the perfect periodic
case.

8. Summary and concluding remarks

The effects of small irregularities in a nearly periodic spa-
tially excited structure have been studied with a new statis-

tical approach. The method used is suited for sound insu-
lation problems. Also the acoustic radiation has been con-
sidered.

The irregularities cause extra damping and stiffness in
the mean vibration field if material damping is present. If
no material damping is present, only an increase in the
stiffness can be seen. A conclusion addressed to shipyards
and the building industry is that it may be a good idea to
maintain and increase the amount of irregularities and im-
perfections in built-up structures such as walls and floors.

Monte-Carlo simulations shows that the nearly periodic
solution is not identical to the ensemble average. How-
ever, the tendency is the same and the sample functions
are always closer to the nearly periodic solution than to
the perfect periodic solution.

The proposed method is also shown to be suited for
evaluation of the free wave propagation.

Sound radiation and sound-insulation transmission loss
has also been studied. The method is well suited to handle
this situation (unlike the methods used in the past, such as
[2, 3, 4]). The same tendency as before can be noticed in
this case.
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Appendix

Calculation of the matrix componentsCnm in section 4.8,
equation (57). Consider the integral

I(x; �) =
1

2�

1Z
�1

ei��

D0�4 �m00!2
e�i�xd�: (A1)

The integral is calculated by means of contour integration.

D0�4 �m00!2 = 0) �4i = m00!2
Æ
D0 (A2)

Thus, if using the notation kB = 4

q
m00!2

Æ
D0,

�1 = kB ; �2 = �kB ;
�3 = ikB ; �4 = �ikB : (A3)

The residues are found to be

Res
�!�i

�
e�i�(x��)

D0�4 �m00!2

�
=

e�i�i(x��)

4D0�3i
(A4)

If x � � < 0 is the upper half space to be used, and (after
considering the effect of damping) the poles �2 and �3 fall
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inside the contour,

I(x; �)=
1

2�
2�i

X
n=2;3

Res
�=�n

(A5)

=
�1

4D0k3B

�
ieikB(x��)+ ekB(x��)

�
; x� � < 0:

If x � � > 0 is the lower half space to be used, and the
poles �1 and �2 fall inside the contour,

I(x; �)=� 1

2�
2�i

X
n=1;4

Res
�=�n

(A6)

=
�1

4D0k3B

�
ie�ikB(x��)+ e�kB(x��)

�
; x� � > 0:

Thus, if combining (A5) and (A6)

I(x; �) =
�1

4D0k3B

�
ie�ikBjx��j + e�kBjx��j

�
(A7)

and matrix components are found to be

Cnm = I(m� n; 'n � 'm) (A8)

=
�1

4D0k3B

�
ie�ikBjml+'m�nl�'nj+e�kBjml+'m�nl�'nj

�
:
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