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Abbreviations

ESEA Experimental Statistical Energy Analysis
DLF Damping Loss Factor(s)

FRF Frequency Response Function

HF High Frequency

LF Low Frequency

LMPR Local Modal Phase Reconstruction

PIM Power Injected Method

PSD Power Spectral Density

rms root mean squared value

SEA Statistical Energy Analysis
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1. Introduction

This report describes experimental investigations and related post-processing for identifying
mechanical forces exerted by a typical shock machine on a floor. The identified forces are intended
to feed input of a further theoretical SEA model of a building in order to predict noise annoyance
resulting from such a source.

2. First test campaign in FCBA

The tests were performed in FCBA on March, 2015 in FCBA facilities.

2.1 Test conditions

2.1.1 Shock machine

The shock machine used as exciter during the testing is the Bruel&Kjaer machine type 3207
equipped with five hammers as shown in next picture.

Figure 1: B&K shock machine used as exciter

2.1.2 Impact hammers

Two impact hammers equipped with force cells are used for injecting a known vibrational power in
the floors. The first one is a mid-sized Kistler hammer for mid and high frequencies (InterAC
equipment) and the second a Dytran large-sized hammer (FCBA equipment) for exciting low
frequencies. The Kistler hammer is seen in next picture.

Figure 2: Operating power injection measurement with the Kistler hammer

2.1.3 Transducers

When actuating impact hammers, force is recorded thanks to their built-in force transducer.
Acceleration is recorded at various points on floors using different types of ICP accelerometers:
one Kistler 50 mV/g, three B&K 100 mV/g and one B&K 10 mV/g.
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2.2 Tested floors

A first series of test is performed on a concrete floor (typically 1 m x 6 m flat piece of 9com
concrete supported by metallic I-beams). The concrete floor is seen in next picture.

Figure 3: Concrete floor with accelerometer and shock machine in extreme right position

A second series of test is performed on a flat panel of OSB18 supported on two resilient layers and
installed on previous concrete floor.

Figure 4: OSB 18 panel mounted on resilient layers and shock machine in extreme right position

2.3 Test sequences

2.3.1 Acquisition system

Data are acquired by a National Instruments 4-channel USB board connected to a note book and
driven by SEA-XP 2014 acquisition software from InterAC, dedicated to experimental SEA
measurements.

Transfer functions and time histories under impact hammer excitation are recorded as time
windows of 4k-samples at 50 kHz rate.

Time histories under shock machine excitation are recorded as time windows of 32k-samples at 25
kHz rate.
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Figure 5: Notebook and card driven by SEA-XP software

2.3.2 Concrete floor test sequences

The concrete floor behavior is first investigated by measuring transfer frequency responses
functions under impact hammer. The aim is to estimate the damping loss factor (DLF) of the
concrete floor, its driving point mobility and mean transfer squared velocity under this controlled
input. Because the concrete floor is very stiff, the two impact hammers are successively used , the
large hammer giving better noise/signal ratio in LF range (but with cut-off frequency around kHz)
while the mid-sized hammer is providing response ranging between 500 Hz up to 3000 Hz.

Second the shock machine is put in position on the floor at four different locations with fixed four
transducers positioned in the middle of the concrete floor

Figure 6: The four fixed location accelerometers used when shock machine is put on floor

2.3.3 OSB floor test sequences

Same sequences are reiterated for the OSB floor, while skipping the large hammer sequence as
noise ratio is always good enough with mid-sized hammer on this light-weighted floor.

Figure 7: OSB floor under hammering with mid-sized hammer
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2.4 Post-processing analysis: Concret floor analysis

2.4.1 Analyzing response under mid-sized and large-sized impact hammers

SEA-XP software is used to generate SEA parameters from previous measurements. SEA-XP
provides:

e The conductance Y (injected power/unit force) computed in frequency domain as real part
of mean FRF V/F at driving point

e The mean squared transfer velocity <V?>computed in frequency domain from modulus

2 . . .
|V / F| averaged over various locations of accelerometer and hammer impact over the
floor domain

e The mean reverberation time in the floor (computed from FRF impulse response) and
transformed into apparent DLF and equivalent mass

e From previous data, the experimental SEA model of the floor (1-subsystem model) is

Y
om <v2>
The two hammers show different validity bandwidth: large-sized hammer gives a correct response
up to 800 Hz and the mid-sized hammer up to 2500 Hz.

generated and solved. On output, it gives a DLF computed as: 77(@) =

Between 100 and 800 Hz, data from large and mid-hammers are geometrically averaged as both
measurements are valid but still depending on location due low modal density of the concrete floor.

Below 100 Hz only large hammer data are retained and symmetrically above 800 Hz only mid-
hammer data are retained.

Measured and averaged conductances spectra are given in 1/3rd octave bands in Figure 8.

DLF averaged over LH and MH tests is given in Figure 11. DLF is around 10% at 100 Hz and
shows a decaying slope (5% value at 1000 Hz).
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Figure 8: Conductance measured at driving points with large (LH) and mid-hammers (MH) and averaged
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Figure 9: Mean squared velocity of the floor under impact measurement with large and mid-hammers
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Figure 10: Mean rms velocity of the floor averaged over LH and MH results
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Figure 11: Mean damping loss factor (DLF) of the concrete floor averaged over LH and MH tests
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2.4.2 Analyzing response under B&K shock machine

The shock machine response is recorded for 4 positions of the shock machine. Peak time histories
are dropping by a factor of 3 between position 1 and 4.

Figure 12: Shock machine in last position and the four accelerometers at fixed location
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Figure 13: Acceleration time history of first accelerometer in nearest position from shock machine (about 20
cm)
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Figure 14: Acceleration time history of first accelerometer in furthest position from shock machine (about 20

cm)

The mean autospectrum S,, is computed in narrow band from all recorded time histories and for all

positions and given in Figure 15.

The mean rms velocity of the concrete floor to the shock machine excitation is computed as:

Related spectrum is given in Figure 16.
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Figure 15: Autospectrum of the mean acceleration response to shock machine computed from all recorded

time histories
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< v> rms under shock machine load
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Figure 16: Mean velocity rms response of the concrete floor to shock machine (in 1/3rd octave band

2.4.3 Equivalent force exerted by shock machine on the concrete floor

To extrapolate the force exerted by the shock machine, the transfer H, =< v > Y, is first
estimated from impact hammer tests in which Y (the driving point mobility) was measured.

In the shock test, it is assumed same function applies as impact from individual shock machine
hammers are not too different from the one that was used in impact tests.Then,

2 2
H,=<Vv*>,/P,=>P,=<v">, /H,

where F’2 is the total injected power by the shock machine and < V2 >, the mean response of the

concrete floor in term of squared velocity. The rms spectrum of the force is then obtained from:
F=JP/Y,

because time histories of the shock machine hammer are well separated in time and they not
interfere. The rms force spectrum calculated by this mean is given in Figure 17.

Equivalent rms force spectrum of shock machine

1.E+02

1.E+01

Nrms

1.E+00 T T
10 100 1000 10000

Frequency (Hz)

Figure 17: Equivalent rms force from the shock machine on the concrete floor (in 1/3rd octave band)
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2.4.4 Validation of force identification

To validate previous post-processing, a SEA theoretical model of the floor is built. The model is
thus checked against experimental SEA results where all parameters are under control. The
measured SEA DLF is allocated to the floor subsystem which is excited by the measured mean
injected power identified under impact hammer. Elastic characteristics of the concrete material are
slightly adjusted from default values for improving correlation with conductance measurements. E
is decreased from 1E11 down to 8E11. Mass density is kept at default (2300 Kg/m®).

Edit Concrete (Orthotropic Material) E]E] E|

M ame

| Concrete |

|Drth0tropic £ |
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p 2300 | ka/w? n 0.01
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Ex BE+10|Pa o 1.2E-05| k.

Ev BE+10]Pa Poigzan B atiog

Shear Moduluz MU 03684
Gry JE+10| Pa NUy 0.36504

Figure 18: SEA+ floor model for correlation with impact hammer tests

Corresponding SEA model of the floor is very simple, just one plate subsystem in concrete 90mm
with dimensions 1m x 6 m excited by the user-defined measured mean power.

The calculated conductance (or shortly the mobility) is compared with measured mean value Y and
excellent agreement is found above the first mode of the floor which cannot be predicted accurately
by the analytical SEA model. The prediction of mean rms velocity response is compared with
measured velocity in Figure 20 where agreement is found excellent up to max frequency of the
measurement (3000 Hz).
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Figure 19: Conductances measured and predicted by the concrete floor SEA+ model
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Figure 20: Mean rms velocity responses of the concrete floor measured and predicted by the concrete floor
SEA+ model under measured injected power from impact hammer

A second model is then built by simply applying to the same concrete floor subsystem the
previously identified force from the shock machine. The SEA+ model is now predicting the mean
velocity response compared with measurement in Figure 22. The excellent agreement above 40 Hz
is validating our initial assumption that the shock machine is acting not very differently from an

impact hammer.
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Figure 21: Applying the equivalent force of the shock machine as a point force to the concrete floor
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Figure 22: Mean rms velocity responses of the concrete floor measured and predicted by the concrete floor
SEA+ model under shock machine equivalent force
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2.5 Post-processing data: OSB18 floor analysis

251

Measurement analysis

The post-processing is similar to Concrete case: PIM method is applied to identify conductance,
DLF and equivalent mass of the subsystem under impact hammer. The conductance is given in
Figure 23 for the region where OSB panel is freely moving and in the region where it is supported
by the resilient layer. Slightly lower conductance is found in the latter case at low frequencies while
it becomes slightly larger than free conductance at high frequencies which may be due to
accelerometer mounting or to effective additional HF resonance of OSB on top of resilient layer.

The experimental DLF and the related equivalent mass are given in Figure 24.
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252

Simulation of impact hammering on OSB18

OSB18 material properties are defined in Figure 25 with related measured and calculated
conductances from SEA+ model. Agreement between measured and calculated conductances
confirms the choice of OSB elastic parameters.
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Figure 25: OSB properties on left and on right predicted and measured conductance of 18mm —QOSB panel

The measured DLF is imported in the OSB subsystem and predicted rms velocity is compared to
measured one (under impact hammer) in Figure 26.

Above 2kHz, the predicted response and the measured one start to deviate from each other partly
due to previously observed difference in HF predicted and measured HF conductance as it can be
seen by observing that the deviation between measured velocity and predicted one is larger in HF
with unit force load because conductance Y is theoretically calculated and Pinj = Yx F2 .
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Figure 26: Top Prediction and measured mean velocity response of the OSB18 panel under measured
injected power and bottom velocity response under unit force load

2.5.3 Simulation of shock machine excitation on OSB18

As done for concrete floor, the mean velocity response of the OSB floor is computed from recorded
acceleration time histories at the various locations of the shock machine in operating conditions.

The mean autospectrum of acceleration is given in narrow band in Figure 27.
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Figure 27: Left: One particular time history record of the OSB acceleration response under operating shock
machine load

The mean 1/3rd octave velocity computed from previous autospectrum is given in Figure 28. The
predicted response is closed to the measured one.
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Figure 28: Mean velocity response of OSB floor under operating shock machine load

The injected power of the shock machine is then processed as:
2
P-P <VS>
S TTHT7 2\
(vé)
and the force is obtained as:

S U B I P

)T ) ()

with H for "Hammer" and S for Shock machine". The related spectra are given in Figure 29. When
the equivalent force is applied to the OSB18 panel the predicted and measured mean velocity
response are nearly identical (see Figure 30)
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Figure 29: Righ Injected power from the shock machine in OSB18 and left related equivalent rms force
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Figure 30: Predicted (red) and measured (dashed blue) mean rms velocity of the OSB18 panel under shock
machine load

2.6 Comparing forces from shock machine on concrete and on OSB

The forces delivered by the shock machine are showing very different amplitudes and spectra,
depending whether they are applied to concrete or to OSB floor.

The ratio of Shock machine force "Fconcrete/F_Osb" is given in Figure 31 and compared in same
Figure with related ratio between measured hammer forces recorded with mid-sized hammer.

Some care needs to be taken in comparing spectra as force responses are defined in rms N and
then sensitive to window length.

A quick scaling of transient events recorded with different window length is to calculate their total
signal energy and to compare them. The total energy is obtained by:

Ere (0,T)=T-Sg¢
where T is the record window length and SFF the power spectral density or PSD of F.
The PSD is also equal to:

See =T-F?

where F2 is the autospectrum.

Then the total signal energy is equal to:

E.(0,T)=T2 F?
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Figure 31: Ratio of force_concrete/force osb estimated in shock machine test and in impact hammer test

If we directly observe the compared force spectra applied by impact hammer and by shock
machine (Figure 32 and Figure 33), we see shock machine spectrum showing larger offset
compared to impact hammer when it is applied to the hard concrete (Figure 33). This offset is
smaller on force applied to OSB (Figure 32) but showing a more pass-band behavior.

Comparing shock-machine impact on both OSB and concrete in Figure 34 shows the OSB impact is
much less efficient in HF range due most probably to low-pass filtering of injected power as usual
for soft structures.

As a conclusion, the shock machine is interacting with the floor bending stiffness. Down to 500 Hz,
it may be assumed that the force is nearly independent of floor bending stiffness while this
assumption does not held above 500 Hz.

As shown in this report, PIM test protocol is providing an easy way to calibrate the shock machine
spectrum in order to predict reliable output levels of vibration from the SEA model.
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Figure 32: Rms spectrum of mean force applied by shock machine when operating on concrete floor and related rms
force spectrum of mean force applied with impact hammer
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Figure 33: Rms spectrum of mean force applied by shock machine when operating on OSB floor and related
force spectrum of mean force applied with impact hammer
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Figure 34: Compared reconstructed mean force spectra per impact applied by shock machine when operating on
concrete and OSB floors
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2.7 Prediction of Time history response to the shock machine

2.7.1 Brief explanations on SEA-SHOCK theory

The module SEA-Shock available in SEA+ is now used to reconstruct a time history response from
the SEA model. The SEA model does not deliver any invertible transfer so to reverse the analysis
to time domain, some additional signal processing is required as well as a couple of assumptions.

First of all, we need as input a force time history. Second, connected subsystem needs to be
weakly coupled in order that in any subsystem, one can reconstruct a scaling function (a modal
complex FRF) based only on the local dynamic response of the receiver (subsystem in which we
need the time history response).

Basic theory implemented in SEA-Shock is based on the calculation of this scaling function
obtained as the complex modal response to a unit-force applied in the receiver subsystem. This
special FRF is providing a phase to the real-value FRF given by the classic frequency solution of
the SEA network. In the receiver the real-valued FRF is made complex and the complex
amplitudes given in narrow frequency bands are interpolated for satisfying the condition that their
integral over the SEA frequency bands has to converge to SEA FRF modulus. This is the essence
of the LMPR algorithm (Local Modal Phase Reconstruction) which provides an invertible FRF
function in the complex frequency domain. Convoluted with the time history of the input, the time
history of the receiver can then be synthesized.

This methodology has been developed over ten years in research applied to spacecraft to predict
response to shock tests.

2.7.2 Concrete floor transient response

To perform a quick calculation with SEA-Shock, we need to define some representative force in the
time domain.

The Pulse Generator function of SEA is used for that. Figure 35 shows the pulse response is fitted
manually to describe the T*PSD response of the receiver. By choosing exponentially decaying sine
signal, we are roughly approaching the measured T*PSD. More refined way has to be developed
for better fit to exact shape of T*PSD but we can see from the T*PSD graph of the decaying sine
and the T*PSD of the measurement that at least below 1000 Hz , levels from this simple force
profile are similar and main peak at 500 Hz is well reproduced.

This signal is made quite impulsive with an arbitrary duration of around 10 ms.

When this input time history signal (named "Shock machine approximation") is stored in SEA+
database, it has to be allocated to a time domain source (Figure 36).

The subsystem is declared as "LMPR receiver" to output the response in the time domain after
connecting the time domain source to the concrete floor (see picture in Figure 36). It is now
surrounding by a transparent sphere indicating it is now the output.

Figure 37 shows the comparison between prediction and measured response. As expected from
selected T*PSD force spectrum, low and mid frequencies content below 500 Hz is well
reconstructed and HF are filtered as selected excitation is behaving more like a low pass filter. It is
why the measured signal is filtered by a low pass of order 2 and compared with the prediction.
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Figure 35: Pulse Generator dialog box in SEA+ and entering a formula for fitting with current force autospectrum
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Figure 37: Synthesized and measured force pulse (blue) when impacting the concrete floor

3. Second test campaign in FCBA

3.1 Test conditions

The tests were performed in FCBA on August 31, 2015 on another wood floor. The floor was
characterized by experimental SEA measurements and records of acceleration of floor under
excitation by shock machine were recorded. The tested floor is seen in Figure 38.

Figure 38: Tested OSB floor 2d test campaign
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This floor is made of OSB 20. Size is 4 m length and 2.5 m width with a weight 70kg corresponding to
mass density of 350 kg.

The floor is supported on a network of parallel X studs lying on concrete ground. Distance between studs
is 0.6 m. Individual panels of OSB are screwed every 0.3 m to studs on stud.

Elementary panels are 0.6 X 0.5 m2.

3.2 ESEA measurements on OSB 20 floor

Three ICP accelerometers are fixed to the floor on OSB surface. Hammer impacts are then given at
various point locations to map the vibration field of the floor. The injected power from hammer is
calculated from measured force and acceleration at driving points.

Injected power is given for the three references in Figure 39. Validity frequency band lies from 50 Hz to 4
kHz. Reference 3 is given more level at low frequency as the accelerometer is near panel center while
other transducers are nearer from local edges of OSB panels.

From mean FRF recorded at the various points, injected power and damping, the equivalent mass is
computed (Figure 41). The evolution of equivalent mass with frequency is a pertinent indicator of how the
floor is behaving: From 100 to 500 Hz the mass is decreasing down to 60-100 kg and is climbing up above
800 Hz. Above 3 kHz, mass is collapsing as limit of measurement is reached.

For 390 kg/m3 density, OSB floor is 70 kg (without stud mass) and this is the order of magnitude in the
region 500-800 Hz.

Below 500 Hz mass is larger due to added mass of studs.

Above 800 Hz, the apparent mass increase is due to floor design: coupling becomes weaker and weaker
with frequency between screwed elementary OSB panels. It leads to stronger decrease of acceleration
with distance that what would be expected for a continuous panel of 4x2.5 m2. Equivalent mass is then
increasing, meaning less velocity for a given energy than in a continuous panel.
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Figure 39: Injected power/N2 (real part of driving point mobility) at the 3 reference nodes
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Figure 41: Equivalent mass measured by ESEA

3.3 Correlation of ESEA test on OSB 20 floor with SEA prediction

The measured driving point mobility at the three references is compared with mobility of SEA floor

model.

The material properties to match with measurement are given in Figure 42. Elastic properties are
falling in the range of light OSB panel known values. Better fitting is obtained with section of 18 mm
and mass density of 390 kg/m® is calculated with this thickness. A unit-point force is applied to the
SEA model of floor to simulate impact hammer excitation. The DLF of the floor is set to the
measured DLF given in Figure 40. Rms velocity can be predicted within 2 dB from measurement

per 1/3" octave band with this model as shown in Figure 43.
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Figure 43: Measured Mean velocity of the floor for the 3 reference nodes compared with SEA floor model
when using measured flexural damping in the model and a unit-force as load
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3.4 Measuring acceleration with the shock machine

The three reference accelerometers are still at same location. The shock machine is moved from
one sub-panel to another (23 positions, leading to 23X3 accelerations records-one sub-panel
location has been skipped n°18). Recorded rms acceleration spectra integrated in 1/3" octave
band are given in Figure 44. Above 500 Hz, acceleration levels are scattered within 20 to 30 dB
range, depending on shock machine-reference distance. Figure 45 shows this scattering for
reference #1 with red thick line being the acceleration when shock machine is located in the sub-

panel containing this reference.
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Figure 44: Measured Mean floor acceleration at the 3 references for the 23 locations of the shock machine on

0SB20 floor
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Figure 45: Measured Mean floor acceleration at reference #1 for the 23 locations of the shock machine on

0SB20 floor
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3.5 Predicting shock machine acceleration with SEAWOOD

3.5.1 Injected power from shock machine

The injected power from shock machine is estimated from hammer impact injected power and from
shock machine acceleration.

T2

9
In previous formula, injected power from hammer is averaged over the three references. Velocity?
is averaged over all available records, considering the floor as a single subsystem.

PTM :<P

Hammer >ref

Resulting shock machine injected power is given in Figure 46.

13 New model_1 u] X

Flots  options Graph  pata

Power Tap Machine from ESE

1.00E=1 Pawer Tap Machine f... |+
1.00E~0—
1.00E-1-
2 1.0082-
5
H
£ 1.00E-3-
1.00E-4-
1.00E-5
1.00E-6-, 1 | |
10 100 1000 10000
B | Freq. [Hz]
B w q. Hz)
= Freq. [Hz) 8 || na
2] Power (W) & ||ty

< >

Figure 46: Injected power from shock machine estimated from hammer impact and from shock machine
acceleration

3.5.2 Predicting sub-panel acceleration with SEAWOOD

A detailed model of the OSB floor is built with SEAWOOD as seen in Figure 47. All OSB sub-
panels (0.5 m X 0.68 m) are cross-connected and connected to studs. A multipoint connection is
assumed between panels with 0.3 m spacing between connecting points. Connected panels are
either connected by pair (along x-axis) or multiport connected (2 OSB panels+ 1 stud). The
damping loss factor allocated to each sub-panel is the measured ESEA DLF estimated from the
floor. One shock machine location is simulated by applying the shock machine injected power to
one particular sub-panel. Predicted acceleration in sub-panels is given in Figure 48. The levels are
remarkably similar to recorded ones given in Figure 45.

Therefore given injected power and mean FRF velocity under impact hammer and mean floor
acceleration under shock machine load, an accurate SEAWOOD model of the floor can be built
from estimated shock machine injected power and floor damping, assuming some realistic model of
junction between floor components.

This model is valid above first local resonances of sub-panels (i.e. 500 Hz). Below the model gives
correct order of magnitude but as the floor behaves more as a single panel, acceleration in the
excited subsystem tends to be over-predicted as energy is mostly concentrated in a smaller area in
the model while it is actually spread over the entire floor in this low frequency range.
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Figure 47: OSB20 floor detailed SEAWOOD model
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Figure 48: Predicted floor acceleration in all sub-panels for shock machine location shown in Figure 47
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4. Conclusions

We have shown that a simple method based on Power Injected Method (PIM) on an isolated floor
can provide the injected power spectrum of the shock machine in different analyzed cases

The injected power from the shock machine is found to be dependent on floor bending stiffness
and more high frequency filtering occurs on soft floor made of OSB compared to thick floor in
concrete.

The transient response time history of the floor can also be simulated by SEA-Shock module of
SEAWOOD software. Regarding this time history prediction, a force input is required. Current input
by force is difficult to assess with accuracy as force from shock machine was not measured in the
test campaign and an existing SEA-Shock force profile was tuned to fit identified power inject
spectrum inducing limitation in HF range.

In the OSB20 test case, we show that the floor mean acceleration per small sub-panels can be
directly predicted in the frequency domain as rms acceleration from detailed SEAWOOD model of
the floor. This method is easier to use as it does not required any force input from the shock
machine.
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