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FOREWORD 

The i n v e s t i g a t i o n s described i n t h i s r e p o r t were i n i t i a t e d by the wish of 
the representatives of i n d u s t r y t o improve present methods f o r the design 
w i t h respect t o f i r e of w a l l s f o r s i n g l e f a m i l y houses. The o r i g i n a l plan 
had been t h a t the problem would be studied only experimentally. However, 
during e v a l u a t i o n of the experiments a number of phenomena arose which 
necessitated e l u c i d a t i o n by means of t h e o r e t i c a l s t u d i e s . I wish t o thank 
B i r g i t östman f o r her support i n c a r r y i n g out t h i s work. 

The t e s t s were made by Claes K u l l b e r g a t the Department of Steel Construc­
t i o n , Royal I n s t i t u t e of Technology, Stockholm. Joakim Norén as s i s t e d i n 
the t e s t s and e v a l u a t i o n . Bo Källsner provided valuable and c r i t i c a l obser­
vations . 

The f i g u r e s were drawn by Pi Dragojevic, and the manuscript was typed by 
Yvonne Larsson. 

The work was financed by funds from the timber i n d u s t r y and the Swedish 
Board f o r Technical Development (STU) to the Swedish I n s t i t u t e f o r Wood 
Technology Research. 

The Swedish o r i g i n a l was t r a n s l a t e d by L J Gruber BSc(Eng) MICE MIStructE. 

I n t h i s e d i t i o n subsection 3.24 was shortened and a new appendix A5 was 
supplemented. 

I wish t o extend my sincere thanks t o a l l who have c o n t r i b u t e d t o t h i s 
work. 

Stockholm, August 1988 

Jiirgen König 



SUMMARY 

I n Sweden, the loadbearing w a l l s of s i n g l e f a m i l y houses must a t present be 
designed w i t h respect to f i r e i n order t o provide the necessary degree of 
sa f e t y against the spread of f i r e . One of the p r e c o n d i t i o n s i n order t h a t 
the f i r e r esistance of an e x t e r n a l w a l l should be secured i s t h a t i t s load-
bearing capacity should be maintained. 

With the aim of studying the s t r u c t u r a l behaviour of wood studs, a t e s t 
series was c a r r i e d out on a x i a l l y loaded wood studs. I n these t e s t s , the 
e f f e c t of f i r e on the wood studs was simulated by removing layers from the 
stud by planing i t on the side which was supposed t o be exposed t o f i r e . 
D i f f e r e n t support c o n d i t i o n s , such as the use of c e l l u l a r rubber sole p l a t e 
s e a l i n g s t r i p s and i n c l i n e d base or i n c l i n e d roof t r u s s r a f t e r , were 
studied. Six of the specimens consisted of s o l i d 45 x 120 mm timber studs, 
and two were l i g h t w e i g h t studs comprising timber flanges and webs of wood 
f i b r e board. I n a l l cases the studs were join e d by short pieces of timber 
corresponding t o the sole p l a t e and top p l a t e . During the t e s t s , the speci­
mens were placed between r i g i d , non r o t a t i n g support p l a t e s , the i n t e n t i o n 
being t o reproduce c o n d i t i o n s i n a s i n g l e f a m i l y house c o n s t r u c t i o n . 

In the t h e o r e t i c a l p a r t of the i n v e s t i g a t i o n , two a n a l y t i c a l models are 
studied. I n one of the models i t i s assumed t h a t the ends of the stud are 
p i n j o i n t e d . The s t r u c t u r a l behaviour cannot be described s a t i s f a c t o r i l y by 
t h i s model. I n the other a n a l y t i c a l model, the stud i s assumed t o be placed 
between r i g i d end plates as i n the t e s t s . The end surfaces of the stud are 
i d e a l i s e d as c y l i n d r i c a l convex surfaces, enabling a r o l l i n g motion t o take 
place as loading and deformations proceed. T h e o r e t i c a l s o l u t i o n s are de­
r i v e d f o r d i f f e r e n t loading cases and boundary c o n d i t i o n s . I n order t h a t i t 
should be possible to apply these, i d e a l r a d i i are determined w i t h the a i d 
of the t e s t r e s u l t s t o describe the geometrical shape of the end surfaces. 
kn approximate expression f o r the i d e a l radius i s formulated i n order t h a t 
i t may also be used f o r other cross sections and lengths. 

With the a i d of parametric s t u d i e s , the i n f l u e n c e due t o i n c l i n a t i o n of the 
base and the i n t e r a c t i o n between a x i a l force and transverse load i s 
studied. The r e s u l t s show t h a t the two load components can be superimposed 
by applying l i n e a r i n t e r a c t i o n . 

F i r e t e s t s can thus be c a r r i e d out separately f o r a x i a l and transverse 
loading. By determining the loadbearing capacity f o r a c e r t a i n f i r e r e s i ­
stance period, i t w i l l be possible t o design a timber stud under f i r e expo­
sure c o n d i t i o n s f o r a r b i t r a r y loads and load combinations. 



1. BACKGROUND AND AIMS 

Design of the s t r u c t u r a l elements i n a b u i l d i n g w i t h respect t o f i r e i s t o ­
day an obvious p a r t of o v e r a l l design. In order t h a t the required degree of 
s a f e t y against the spread of f i r e may be provided, i t i s e s s e n t i a l t h a t , i n 
p a r t i c u l a r , the e x t e r n a l w a l l s of houses should have adequate f i r e r e s i ­
stance . 

The f i r e r e s i s t a n c e of a w a l l i s i t s a b i l i t y t o f u n c t i o n as a b a r r i e r 
against f i r e . I n the case of w a l l s which have only a space separating func­
t i o n , f i r e r e s i s t a n c e depends on the i n s u l a t i o n of the w a l l t o l i m i t the 
flow of heat through the w a l l , and also on i t s i n t e g r i t y t o prevent passage 
of flames or hot gases. I n the case of loadbearing w a l l s , f i r e r e s i s t a n c e 
i s i n a d d i t i o n l i m i t e d by the a b i l i t y of the w a l l to c a r r y the imposed 
loads. 

For the loadbearing e x t e r n a l w a l l s of s i n g l e f a m i l y houses and s i m i l a r 
b u i l d i n g s , loading c o n s i s t s of an a x i a l and a transverse load. These loads 
are due, f o r instance, t o dead load, snow load on the r o o f , imposed loads 
on the a t t i c storey, and wind loads on the w a l l s . 

As a r u l e , the load on a w a l l v a r i e s from case t o case. The snow loads on 
the roof and the wind loads depend on where i n the country the b u i l d i n g i s 
s i t u a t e d , and the imposed loads depend on the type of b u i l d i n g i n 
question. I t i s t h e r e f o r e d e s i r a b l e t h a t design of w a l l s f o r the loading 
case f i r e should be c a r r i e d out i n such a way t h a t the a c t u a l loads and 
d i f f e r e n t combinations of these can be taken i n t o c o n s i d e r a t i o n . A design 
method must also f a c i l i t a t e the a p p l i c a t i o n of d i f f e r e n t p a r t i a l c o e f f i ­
c i e n t s , which i s important i n c o n j u n c t i o n w i t h the export of p r e f a b r i c a t e d 
houses. 

As a r u l e , the f i r e r e s i s t a n c e of l i g h t w e i g h t w a l l c o n s t r u c t i o n s such as 
timber stud w a l l s i s today determined i n Sweden by f i r e t e s t s a t f u l l 
scale. I n order t o s i m p l i f y t e s t i n g , the w a l l i s g e n e r a l l y acted upon only 
by a x i a l loads which are however, i n order t o take account of the a c t i o n of 
transverse f o r c e s , a p p l i e d w i t h a c e r t a i n e c c e n t r i c i t y . The supports of the 
w a l l are p i n j o i n t e d / I / . 

I n a number o f cases, t h i s procedure r e s u l t s i n considerable underestima­
t i o n of the loadbearing capacity of the c o n s t r u c t i o n , since the s t r u c t u r a l 
behaviour of an a c t u a l c o n s t r u c t i o n i s not reproduced i n the c o r r e c t way. 

The aim of the experimental p a r t of the i n v e s t i g a t i o n described i n t h i s r e ­
p o r t was t o study the s t r u c t u r a l behaviour of the studs. The f i r e and i t s 
e f f e c t s , c h a r r i n g and the thermal e f f e c t s on the s t r e n g t h and s t i f f n e s s of 
the remaining cross s e c t i o n , were simulated q u a l i t a t i v e l y by planing the 
studs on the side exposed t o f i r e . 

The aim o f the t h e o r e t i c a l p a r t of the i n v e s t i g a t i o n was t o provide an ex­
p l a n a t i o n f o r a l l the phenomena observed i n the t e s t s , and t o have the 
c a p a b i l i t y t o deal also w i t h other types of loads and load combinations and 
thus to minimise the number of t e s t s . 

The thermal e f f e c t s on s t r e n g t h and s t i f f n e s s d i d not come w i t h i n the terms 
of reference of t h i s i n v e s t i g a t i o n . I t i s important t h a t these should be 
studied separately so t h a t the r e s u l t s can be used i n a t h e o r e t i c a l t r e a t ­
ment of the problem, and the number of f i r e t e s t s can be reduced. 



2. EXPERIMENTAL INVESTIGATIONS 

2.1 General 

I n many cases, the framing i n the loadbearing e x t e r n a l w a l l s f o r s i n g l e f a ­
mily houses today consists of s o l i d v e r t i c a l studs and h o r i z o n t a l studs 
attached t o the outside faces of these. The cladding on the outside acts as 
wind p r o t e c t i o n and, when there are no h o r i z o n t a l studs, also has the func­
t i o n of preventing buckling of the studs i n the plane of the w a l l . At pre­
sent, common stud dimensions are 45 x 120 mm and 45 x 170 mm. In most 
cases, these studs are w i t h i n the c l a s s i f i c a t i o n "Ö-virke" according t o 
Swedish B u i l d i n g Code SBN 1980 /2/. Walls comprising l i g h t w e i g h t studs, 
which may be composite I-sections c o n s i s t i n g of flanges of small dimension 
timber and a web of wood f i b r e board, are becoming i n c r e a s i n g l y common. In 
these w a l l s the cladding which provides p r o t e c t i o n against the wind i s 
attached d i r e c t l y to the e x t e r n a l flanges of the l i g h t w e i g h t studs. The 
w a l l s are f i l l e d w i t h mineral wool i n order t o provide s a t i s f a c t o r y thermal 
i n s u l a t i o n . 

I n the event of f i r e , the i n t e r n a l board l i n i n g provides the i n i t i a l 
b a r r i e r . A f t e r some time t h i s burns completely or f a l l s down from the w a l l , 
see e.g. /3/ (Noren and Östman, 1985). The loadbearing v e r t i c a l studs are 
then d i r e c t l y exposed to f i r e . Since the mineral wool pr o t e c t s the sides of 
the studs from the f i r e , combustion takes place mainly on the i n s i d e of the 
w a l l . See Figure 2.1. The aim of the t e s t s reported here was to study the 
mechanical deformation and f a i l u r e behaviour of a x i a l l y loaded cross sec­
t i o n s exposed t o f i r e on one side. For t h i s reason, the f i r e sequence was 
simulated by successively removing a p a r t of the cross s e c t i o n by planing, 
so t h a t the e f f e c t i v e cross s e c t i o n of the stud was g r a d u a l l y reduced. The 
r a t e of combustion i s somewhat greater a t the corners, and the boundary of 
the e f f e c t i v e cross s e c t i o n i s t h e r e f o r e a l i t t l e rounded on the side 
towards the f i r e . However, t h i s was not taken i n t o account i n the t e s t s 
since the general behaviour of the specimens i s not a f f e c t e d . The cross 
s e c t i o n of the studs and flanges was thus rectangular a t a l l stages o f the 
t e s t . 

Figure 2.1. 
Stage of f i r e a f t e r loss 
of the i n t e r n a l l i n i n g . 

Since support c o n d i t i o n s can vary considerably i n p r a c t i c e , the e f f e c t of 
these on the behaviour of the studs was a l s o s t u d i e d i n the t e s t s . I n order 
to ensure t h a t b u i l d i n g s are a i r t i g h t , s e a l i n g s t r i p s of c e l l u l a r rubber 
are a t present placed between the sole p l a t e or top p l a t e and a d j o i n i n g 
parts of the b u i l d i n g . I n c l i n a t i o n of the foundation or d e f l e c t i o n of the 
roof t r u s s may have the e f f e c t t h a t load i s a p p l i e d a t a l a r g e e c c e n t r i ­
c i t y . 



2.2 Specimens and t e s t apparatus 

Two types of specimen were i n v e s t i g a t e d . Each specimen consisted of a stud 
of 2,400 mm length and pieces of timber 250 mm long and 45 mm t h i c k which 
represented the sole p l a t e and top p l a t e i n the a c t u a l c o n s t r u c t i o n . 

The s i x specimens of Type 1 comprised s o l i d timber studs of pine (Pinus 
s y l v e s t r i s ) i n the Swedish grade Ö-virke (the c h a r a c t e r i s t i c bending 
s t r e n g t h i s 15 N/mm^), of the dimensions 45 x 120 mm. The timber f o r the 
sole p l a t e and top p l a t e had the same dimensions and was i n the same 
grade. The n a i l e d j o i n t s consisted of 2 No 100 x 3.4 n a i l s d r i v e n s t r a i g h t 
through the sole p l a t e and top p l a t e i n t o the end g r a i n of the studs. Four 
of the specimens were f i t t e d w i t h c e l l u l a r rubber s e a l i n g tapes (AB Värnamo 
Gummifabrik); these were attached t o the sole p l a t e and top p l a t e by 
staples. See the summary i n Table 2.1 and Figure 2.2. I n the specimens 
where the se a l i n g tape was narrower than the timber, i t was placed 
c e n t r a l l y . 

Specimen Specimen 
® 

77. 

Figure 2.2. Support c o n d i t i o n s i n the t e s t s . The upper support p l a t e i s 
h o r i z o n t a l i n a l l t e s t s . 



Table 2.1. Design of specimens and supports i n the t e s t s w i t h a x i a l load. 

Specimen Stud Sole p l a t e / Sealing I n c l i n a t i o n of Remarks 
top p l a t e s t r i p bottom support 

p l a t e 
{%) 

1 45 X 120 45 X 120 - 0 
2 45 X 120 45 X 120 70 X 10 0 
3 45 X 120 45 X 120 120 X 10 0 
4 45 X 120 45 X 120 - 3.5 
5 45 X 120 45 X 120 120 X 10 3.5 
6 45 X 120 45 X 120 70 X 10 3.5 
7 H 200 MB H 200 MS 120 X loa) 0 Lightweight stud 
8 H 200 MB H 200 MS 120 X loa) 3.5 - " - b) 

a) Cut and f i t t e d as i n Figure 2.2 / ^ ^ ^ " • ̂  • — a 
b) Splice i n web 260 mm from bottom end of stud. 

The two specimens of Type 2 consisted of Masonite Byggsystem l i g h t w e i g h t 
studs made by Swanboard Masonite AB, of 2,400 mm le n g t h and stud depth 
200 mm. The dimensions of the flanges were 45 x 45 mm and the thickness of 
the wood f i b r e board web 6.4 mm. A l l dimensions are nominal. The flanges 
were of spruce (Abies alba) and, according to i n f o r m a t i o n supplied by the 
manufacturer, were a t l e a s t of grade T 18, wh i l e the grade of the web was 
at l e a s t K 13. No checks were made t o f i n d whether the specimens complied 
w i t h these data. The sole p l a t e and top p l a t e consisted of 45 x 70 mm 
timber and the web of wood f i b r e board 8 mm t h i c k . The minimum grades i n 
t h i s case also were the same as f o r the studs. The 120 x 10 mm se a l i n g tape 
was cut i n the middle and was attached t o the sole p l a t e and head p l a t e a t 
a distance of 10 mm from the end (Figure 2.2). 

The t e s t i n g machine f o r a x i a l loading was a h y d r a u l i c press (Losenhausen) 
of 6,000 kN load capacity. I t was f i t t e d w i t h r i g i d end pla t e s which were 
prevented to r o t a t e . For four of the specimens the lower support p l a t e was 
i n c l i n e d 3.5 % so t h a t the undeformed specimen was i n contact w i t h the base 
on the " f i r e " - s i d e . 

The lower support p l a t e was placed on three load c e l l s (Alexen Load I n d i ­
cator, capacity 50 kN) i n order t h a t the p o s i t i o n of the a x i a l force may be 
determined. See Figure 2.3. Using the symbols i n the f i g u r e , t h i s i s 
determined as-. 

d = -aA - bB 4- cC 
N 

The dimensions a, b and c are set out i n Table 2.2. 

Buckling i n the d i r e c t i o n of the minor axis of the stud was prevented by 
means of l a t e r a l supports w i t h s l i d i n g bearings of t e f l o n s t r i p s , f i t t e d a t 
the midpoint and quarter p o i n t s . For specimens Nos 7 and 8 ( l i g h t w e i g h t 
studs), only the outer flange ( t h a t unaffected by the " f i r e " ) was braced i n 
such a way. 



Displacement i n the s t i f f d i r e c t i o n of the stud was measured a t midheight 
by means of a r o t a r y potentiometer type transducer (Novotechnik) w i t h an 
accuracy b e t t e r than - 0.025 mm. 

:<A 

CX 

Figure 2.3. 
Placing of load c e l l s f o r deter­
mination of the p o s i t i o n of the 
a x i a l f o r c e . 

Table 2.2. Placing of load c e l l s . 

Specimen a b c 
mm mm mm 

1 - 6 154 33,9 33,4 
7, 8 240 0 0 

On a l l specimens, a transverse load was also applied i n the s t i f f d i r e c t i o n 
i n order t h a t f l e x u r a l r i g i d i t y may be determined, see Figure 2.4. When the 
compression flange had been removed from specimens Nos. 7 and 8, the load 
was t r a n s m i t t e d t o the tension flange by means of blocks of wood on each 
side of the web. Load was ap p l i e d by a h y d r a u l i c jack and measured w i t h a 
load c e l l . The measured load values had the accuracy - 20 N. 
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Figure 2.4. System and loading f o r determination of f l e x u r a l r i g i d i t y . 

2 . 3 Test procedure and r e s u l t s 

The specimens were conditioned i n a c o n t r o l l e d c l i m a t e room a t 20 *C and 
65 \ RH f o r about one week. Testing commenced even i f there was no c e r t a i n ­
t y t h a t the e q u i l i b r i u m moisture r a t i o had been a t t a i n e d . The reason f o r 
t h i s was t h a t i t was p r i m a r i l y the behaviour a t f a i l u r e which was to be 
studied. The u l t i m a t e load of a x i a l l y loaded studs of la r g e slenderness 
r a t i o i s mainly governed by f l e x u r a l r i g i d i t y , see the formula f o r the 
Euler load. Since the i n f l u e n c e of the moisture r a t i o on f l e x u r a l r i g i d i t y 
i s s u b s t a n t i a l l y less than on the s t r e n g t h , d e v i a t i o n s from the e q u i l i b r i u m 
moisture r a t i o can be ignored. The moisture r a t i o and dry de n s i t y were de­
termined on samples taken from the timber near the p o s i t i o n of f r a c t u r e , 
and are set out i n Table 2.3. 

Table 2.3. Type of timber, moisture r a t i o and dry de n s i t y 
of specimens. 

Specimen Timber Moisture 
% 

r a t i o u Dry d e n s i t y QQU 
kg/m-̂  

1 Pine 14 2 449 
2 14 4 393 
3 14 6 424 
4 • 14 2 422 
5 13 8 384 
6 13 9 437 
7 Spruce 14 0 369 
8 n 14 1 355 
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The specimens were f i r s t t e s t e d under transverse load and then under a x i a l 
load. A f t e r t h i s a l a y e r of the m a t e r i a l was removed on the side of the 
stud exposed t o f i r e w i t h a j i g saw and e l e c t r i c plane. For specimen 1 r e ­
duc t i o n of the cross s e c t i o n began 200 mm from the ends of the stud, f o r 
other specimens r e d u c t i o n began 100 mm from the ends of the stud, see 
Figure 2.4. The m a t e r i a l was planed i n steps of 5 mm on Specimen No. 1 and 
i n steps of 10 mm on the other specimens. Deviations from t h i s , a t the f i ­
n a l stage near f a i l u r e , are set out i n Table 2.4. Reduction of the cross 
s e c t i o n i n Specimens Nos. 7 and 8 ( l i g h t w e i g h t studs) was as shown i n 
Figure 2.5. 

Table 2.4. Results f o r the u l t i m a t e stage. 

Speci­ Depth of cross s e c t i o n Maximum Ultimate Time Distance of N 
men a t 

f a i l u r e 
p r i o r t o 
f a i l u r e ^ ^ 

load load from edge 

h h ^max Nu d 
mm mm kN kN mm 

1 55 60 13.0 12.80 0 18.8 
2 50 60 13.0 9.22 0 15.2 
3 55 60 13.0 12.36 0 17.9 
4 60 60 13.0 13.00 2 h, 

4 min 
10.3c) 

5 55 55 13.0 13.00 8 min 19.OC) 
6 54.5 60 13.0 11.07 0 17.7 
7 85 110 18.0 12.92 0 15.4 
8 135 160b) 18.0 17.81 0 23.7 

a) This cross s e c t i o n maintained the maximum load f o r a t l e a s t 5 minutes 
b) Without flange. 
c) At the end of the creep stage, see Figure 2.13. 

h=200 h= 160 h = 160 h= 85 

Figure 2.5. Stages of cross s e c t i o n f o r specimens Nos. 7 and 8 
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During the t e s t s under transverse load according t o Figure 2.4, the load 
and d e f l e c t i o n were recorded f o r i n t e g r a l values of the midpoint d e f l e c t i o n 
u n t i l t h i s was 5 mm, whereupon the specimen was immediately unloaded. The 
rat e of loading was such t h a t a p p l i c a t i o n of load proceeded f o r a t l e a s t 
2 minutes. An example of the measured r e l a t i o n s h i p between load and mid­
po i n t d e f l e c t i o n i s shown i n Figure 2.6. 

h= 120 

Specimen no,1 

110 

105 

0 5 10 mm W 

Figure 2.6. Examples of transverse load - midpoint d e f l e c t i o n curves f o r 
d i f f e r e n t depths of the cross s e c t i o n . 

The specimens were then placed i n the t e s t apparatus f o r a x i a l loading. 
Load was applied a t a constant r a t e u n t i l the maximum load of 13 kN and 
18 kN r e s p e c t i v e l y was a t t a i n e d a f t e r about 4 minutes. The readings from 
the load c e l l s and displacement transducers were recorded f o r each loading 
stage of 1 kN. When the maximum load had been reached, i t was maintained 
constant f o r 5 minutes and the readings were recorded a f t e r every minute. 
The specimen was then immediately unloaded. 

The maximum load chosen was a l i t t l e less than t h a t permitted according to 
Swedish B u i l d i n g Code SBN 1980 /2/. This was c a l c u l a t e d w i t h respect t o 
buckling i n the s t i f f d i r e c t i o n f o r specimens of Type 1 and had the magni­
tude 13.7 kN. For these specimens, the permissible load w i t h respect t o 
compression perpendicular to the g r a i n i s 10.8 kN, which was thus exceeded 
i n the t e s t s . For specimens of Type 2, i . e . the l i g h t w e i g h t beams, the per­
missible a x i a l load i s 18.8 kN according to data supplied by the manufactu-
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r e r . I n t h i s case the design c r i t e r i o n i s compression perpendicular to the 
g r a i n i n the sole p l a t e and top p l a t e r e s p e c t i v e l y . 

In most of the specimens f a i l u r e occurred already before the whole of the 
a x i a l load had been a p p l i e d . I n two of the specimens, however, where the 
maximum load was kept constant f o r 5 minutes, i t was evident t h a t the spe­
cimen would creep t o f a i l u r e even w i t h o u t f u r t h e r r e d u c t i o n of the cross 
s e c t i o n . I n specimen No. 4 t h i s creep process took over 2 hours. The values 
of the u l t i m a t e loads Nyr depth of cross s e c t i o n h a t f a i l u r e and a stage 
of the cross s e c t i o n before f a i l u r e , and the time over which the maximum 
load Nu was maintained, are set out i n Table 2.4. 

A x i a l load - midpoint d e f l e c t i o n curves are given i n Figure 2.7 a-g. The 
r e s u l t s f o r specimen No. 8 are not given. The reason f o r t h i s i s t h a t the 
presence of a b u t t j o i n t i n the web near the bottom support had such an 
e f f e c t on the d e f l e c t e d shape t h a t the maximum d e f l e c t i o n d i d not occur a t 
the centre. See below. I n order t o i l l u s t r a t e the i n f l u e n c e of the d i f f e ­
r e n t boundary c o n d i t i o n s on the deformations i n specimens Nos. 1-6, the 
curves f o r the l e a s t cross sections of the specimens are also given sepa­
r a t e l y i n Figure 2.8. On comparing the reasonably s t r a i g h t p o r t i o n s of the 
curves as load began t o be a p p l i e d , i t i s seen t h a t the smallest d i s p l a c e ­
ments occurred i n specimens Nos. 1 and 4 which were not f i t t e d w i t h s e a l i n g 
s t r i p s . Specimens Nos. 3 and 5, w i t h 120 mm wide s e a l i n g s t r i p s , come next. 
The l a r g e s t displacements occurred i n specimens Nos. 2 and 6 which were 
f i t t e d w i t h 70 mm wide s t r i p s . I n a l l three p a i r s of specimens, the l a r g e s t 
displacement was recorded f o r the specimen which had an i n c l i n e d support 
p l a t e . 

Figure 2.7 a-g. A x i a l f o r c e - midpoint d e f l e c t i o n curves f o r d i f f e r e n t 
depths of the cross s e c t i o n . 

h=120 115 110 105 100 95 90 85 SO 75 70 65 60 55 
13 1 

10 

10 mm max 

Figure 2.7 a. 
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halSO l i c ICQ 90 BO 

O 5 10 mm max 

Figure 2.7 b. 

h=120 IIO I O O 90 80 70 60 55 

13 1 

10 

O 5 10 mm max 

Figure 2.7 c. 
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h = 120 n o lOO 90 80 70 60 

13 1 

10 

Specimen no. 4 

o 5 10 mm max 

Figure 2.7 d. 

h = i 2 0 n o l o o 9o s o 70 

13 1 

10 

5 

55 

Specimen no.5 

o 5 10 mm max 

Figure 2.7 e. 
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h s i a o I I O I O O 90 80 70 60 55 

13 1 

10 

5 
Specimen no.6 

o 5 lOmm max 

Figure 2.7 f . 

h= 200 190 180 170 160 160 135 110 
1 8 i 

15H 

85 mm 

:£ 10^ 

Specimen no. 7 

O 5 10 mm max 

Figure 2.7 g. 
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Figure 2.8. A x i a l force - midpoint d e f l e c t i o n curves f o r the smallest 
cross sections of specimens Nos 1-6. 

As load was increased, i t was noted t h a t the ends of the studs r o t a t e d so 
t h a t contact w i t h the base p l a t e was concentrated i n c r e a s i n g l y towards the 
outer edge of the stud, while on the opposite edge a gap opened between 
stud and sole p l a t e and between sole p l a t e and base p l a t e . See Figure 2.9 
and 2.10. Near f a i l u r e , t h i s gap extended r i g h t up t o the middle of the 
cross s e c t i o n . I t i s q u i t e evident t h a t the p o s i t i o n of the a x i a l load was 
displaced during the t e s t towards the outer edge of the stud. 

The general s t a t e of a f f a i r s regarding the p o s i t i o n of the a x i a l f o r c e and 
the d e f l e c t i o n of the stud i s set out i n Figure 2.11. I n Figure 2.12, the 
p o s i t i o n of the a x i a l f o r c e and the geometrical centre of g r a v i t y i n the 
centre i s shown w i t h f u l l curves f o r the maximum a x i a l load f o r the 
d i f f e r e n t stages of the cross s e c t i o n . The stages where the maximum load 
had not been reached are marked w i t h dashed curves. The distance between 
the two curves i n the diagrams represents the lever arm of the bending 
moment i n the centre. 
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Figure 2.9. 
Deformations at the upper 
h o r i z o n t a l support i n spe­
cimen No. 4-60 a t maximum 
load. 

Figure 2.10. 
Deformations a t the bottom 
i n c l i n e d support i n speci­
men No. 4-60 a t maximum 
load. 
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• 

Figure 2.11. 
Pos i t i o n s of the a x i a l 
force xj^ and the geomet­
r i c a l centre of g r a v i t y 
xcQ f o r the midsection i n 
the d e f l e c t e d p o s i t i o n . 

Figure 2.12 a-h. The p o s i t i o n of the a x i a l force xj^ a t the bottom 
support of the stud and the p o s i t i o n of the geometrical 
centre of g r a v i t y XQQ i n the centre. Except f o r the 
dashed p o r t i o n s where the maximum load had not been 
reached, the curves r e l a t e t o the maximum a x i a l f o r c e . 

Specimen no. 1 Specimen no.2 

ZN-Zj-Qlmm] N̂'̂ CG """" 

Figure 2.12 a. Figure 2.12 b. 
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Specimen no.3 

Figure 2.12 c. 

Specimen 00.4 

Figure 2.12 d. 
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Figure 2.12 e. 

Specimen no.5 

100 

ZN'Z ( -Q (mm] 

120 n 

100 -

50 ^ 

Specimen no, 6 

50 WO 
2 ^ ,2(- Q ["W"] 

150 200 

Figure 2.12 f . 
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200 1 

100 

60 

Specimen no. 7 

200 

100 

Specimen no. 8 

100 200 100 200 
[mm] 

Figure 2.12 g. Figure 2.12 h. 

The diaqraias show t h a t the p o s i t i o n of the a x i a l force f o r the whole cross 
s e c t i o n i s dependent on support c o n d i t i o n s . For a h o r i z o n t a l base p l a t e , 
the load was very near the centre i n the cases where rubber s t r i p s were 
used (specimens Nos. 2 and 3 ) , while i n specimen No. 1 where the s t i f f n e s s 
p r o p e r t i e s of the sole p l a t e exerted a large i n f l u e n c e i t had a more eccen­
t r i c p o s i t i o n . I n t e s t s w i t h an i n c l i n e d base p l a t e , the e c c e n t r i c i t y of 
the load was considerable but f a i r l y independent of the other support con­
d i t i o n s . 

Displacement of the p o s i t i o n of the a x i a l load during a p p l i c a t i o n of the 
load i s shown i n Figure 2.13 f o r the l a s t cross s e c t i o n a l stage of the spe­
cimens. Specimen No. 8 i s not included since the cause of f a i l u r e was reduc­
t i o n i n s t r e n g t h of the web near the bottom support. See below. 

For specimen No.4, i n which creep proceeded f o r 2 hours before f a i l u r e 
occurred, the p o s i t i o n of the a x i a l load and the geometrical c e n t r o i d of 
the cross s e c t i o n are also p l o t t e d as a f u n c t i o n of the time, measured from 
the time when the maximum load was a p p l i e d . See Figure 2.14. 

I n the l i g h t w e i g h t studs, specimens Nos. 7 and 8, obvious buckles were noted 
i n the web a f t e r one flange had been removed and the web thus had an un­
supported edge. A f t e r f u r t h e r r e d u c t i o n of the cross s e c t i o n there were no 
more v i s i b l e buckles since the slenderness r a t i o of the web decreased. At 
the f i n a l stage of the t e s t , collapse was i n i t i a t e d by compressive f a i l u r e 
i n the web. 
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Figure 2.13. P o s i t i o n of the a x i a l force as a f u n c t i o n of load f o r the 
smallest cross sections i n the t e s t s . 
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Figure 2.14. Creep p r i o r t o f a i l u r e i n specimen No. 4. P o s i t i o n of the 
a x i a l f o r c e and the geometrical centre of g r a v i t y of the beam 
cross s e c t i o n as a f u n c t i o n of time from the a p p l i c a t i o n of 
the maximum load. 
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The web b u t t j o i n t i n specimen No 8 which was placed 260 mm from the bottom 
end of the stud had a considerable i n f l u e n c e on deformational behaviour, 
and t h i s was f u r t h e r accentuated because of the i n c l i n a t i o n of the base 
p l a t e . When 40 mm of one of the flanges had been removed by planing, the 
web was no longer capable of t r a n s m i t t i n g the load t o the other whole 
flange which was not i n contact w i t h the i n c l i n e d base p l a t e i n i t i a l l y . De­
formations however became so la r g e t h a t the e n t i r e flange was soon forced 
against the base p l a t e , and the a x i a l load had moved to the flange. A f t e r 
the l a s t pieces of the flange had been removed, the a x i a l load was i n 
approximately the same p o s i t i o n as f o r specimen No 7, see Figure 2.12 g and 
h. However, due t o l o c a l weakening a t the web b u t t j o i n t , the cross s e c t i o n 
could not be reduced to the same extent as i n specimen No 7. 

2.4 Evaluation 

2.41 Bending s t i f f n e s s 

I n the t e s t under transverse loading d e f l e c t i o n was recorded a t the mid­
p o i n t of the beam and a t a f u r t h e r four p o i n t s , see Figure 2.4. With the 
a i d of these displacements, the bending s t i f f n e s s can be determined as the 
mean value over the gauge lengths S.^ = 600 mm and = 2000 mm. Over the 
gauge lengths the bending moment i s constant. We thus have 

p V i 
1 81w^ 

where w-) i s the r i s e of the e l a s t i c l i n e over the gauge length JK-j. 

Over the gauge l e n g t h S.2 ̂ ^e bending moment v a r i e s . With the a i d of the 
energy equation applied t o the moment d i s t r i b u t i o n s i n Figure 2.15, we have 

10 -3 Iw, 

where W2 i s the r i s e of the e l a s t i c l i n e over the gauge length $.2-

P/2 P/2 

y. :L A 
y 750 

o 
. 750 . 750 „ 

2000 
4 

^ 500 mm 

Figure 2.15. 
Moment diagrams f o r determination 
of the mean f l e x u r a l r i g i d i t y 
(EI)2 over the gauge l e n g t h 
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The moduli of e l a s t i c i t y were determined f o r both gauge lengths and f o r a l l 
stages of the cross s e c t i o n i n specimens of Type 1. The values were found 
to have no appreciable dependence on the depth h of the cross s e c t i o n . 

The v a r i a t i o n s which d i d occur were l a r g e l y due t o measuring e r r o r s caused 
by the l i m i t e d accuracy of readings by the load c e l l s . Only the mean values 
of the moduli of e l a s t i c i t y and the standard d e v i a t i o n s are t h e r e f o r e set 
out f o r each specimen i n Table 2.5. The s c a t t e r i n the values of E. i s 
greater than i n the case of E^, since the incidence and p o s i t i o n or defects 
had a greater i n f l u e n c e over the shorter gauge l e n g t h Zy 

I n the case of specimens Nos. 7 and 8 i t was found t h a t the load l e v e l had 
been too low and the load values f a r too u n r e l i a b l e f o r values of the 
f l e x u r a l r i g i d i t y t o be given f o r the specimens. 

Table 2.5. Results from determination of the moduli of 
e l a s t i c i t y f o r the gauge lengths = 600 mm 
and fi^ = 2000 mm, and associated standard 
d e v i a t i o n s . 

Specimen ^1 ^1 '2 
N/mm2 N/mm2 N/mm2 N/mm2 

1 9117 767 10751 339 
2 14270 1173 9107 268 
3 17033 1567 10425 361 
4 13664 2415 9085 341 
5 17777 1797 12313 413 
6 16881 2015 11056 614 

2.42 S t r e s s e s a t m i d s e c t i o n a t f a i l u r e 

Once the p o s i t i o n of the a x i a l force and midpoint d e f l e c t i o n s of the stud 
are known, i t i s possible t o c a l c u l a t e the maximum extreme f i b r e stresses 

and a t the midsection. This was done f o r specimens Nos, 1, 4, 5, 
6 f o r loads very near the u l t i m a t e load N^, i . e . when the f l a t p o r t i o n of 
the curve had been reached, and f o r specimens Nos. 2 and 3 f o r the u l t i m a t e 
load Nu where the curve e x h i b i t e d a more or less pronounced maximum. See 
Figure 2.8. I n the c a l c u l a t i o n s , l i n e a r d i s t r i b u t i o n of s t r e s s over the 
cross s e c t i o n was assumed. The a x i a l force was assumed t o be a t the same 
p o s i t i o n a t both supports. The e r r o r s which a r i s e i n t h i s way are l i k e l y t o 
be small since the measured distances of the load from the edge e x h i b i t 
f a i r l y small v a r i a t i o n s i n the v i c i n i t y of the u l t i m a t e load and are con­
s i d e r a b l y less than the midpoint displacements of the stud, see 
Figure 2.11. The r e s u l t s of c a l c u l a t i o n s are set out i n Table 2.6. 

The c a l c u l a t e d compressive stresses 0^0 are a t a l e v e l t o be expected 
when the c h a r a c t e r i s t i c value of compressive s t r e n g t h i s 15 N/mm2. I t i s 
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obvious t h a t f a i l u r e commenced on the compression sides of the studs. Owing 
to the p l a s t i c deformations on the compression side near f a i l u r e , t e n s i l e 
stresses also rose r a p i d l y , which explains why a crack also occurred a t 
f a i l u r e a t a knot on the t e n s i l e side near the midsection. 

Table 2.6. Extreme f i b r e stresses a t midsection near f a i l u r e 
c a l c u l a t e d w i t h the a i d of measured values of the 
e c c e n t r i c i t y . 

Specimen N e 
kN mm 

1 12,70^) 19,7-^) 
2 9,22 38,0 
3 12,36 34,1 
4 12,97 19,4 
5 12,93 35,3 
6 10,96 51,3 

omc, 
N/mm' 

omt 
N/mm̂  

16,2 
22,8 
23,6 

14,1-32,4^) 
25,3-34,9^) 

29,7 

5,9 
14,6 
13,6 

4,5-22,7^) 
14,9-24,4^) 
20,8 

Value somewhat too low since the stroke of the displacement 
transducer had been exceeded. 

^) The values r e l a t e t o the beginning and end of the creep stage a t a 
constant load l e v e l . 
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3. ANALYTICAL MODELS 

3.1 Member w i t h p i n j o i n t e d end supports i n compression 

The stud i s assumed to be p i n j o i n t e d a t the ends. The Euler buckling load 
can be c a l c u l a t e d w i t h the a i d of the moduli of e l a s t i c i t y determined i n 
the bending t e s t s . The value f o r the gauge l e n g t h = 2000 mm i s more 
r e l e v a n t f o r bu c k l i n g , and t h i s i s t h e r e f o r e used i n tne c a l c u l a t i o n s . The 
Euler b u c k l i n g load i s thus 

2 
IT E^I 

N^ = — f (3.1) 
*k 

where fij^ = 2490 mm. 

The r e s u l t s f o r the cross sections a t f a i l u r e f o r specimens Nos. 1-6 are set 
out i n Table 3.1 and are compared w i t h the u l t i m a t e loads N^ obtained i n 
the t e s t s . I n a l l cases, the c a l c u l a t e d c r i t i c a l load was exceeded i n the 
t e s t s . I t t h e r e f o r e f o l l o w s t h a t the assumption of p i n j o i n t e d end supports 
i s very conservative. I n a c t u a l f a c t , the c r i t i c a l a x i a l force should 
considerably exceed the u l t i m a t e load since there i s no pure b u c k l i n g case 
i n these circumstances. 

Table 3.1. Comparison of the values of c r i t i c a l a x i a l f o r c e c a l c u l a t e d 
f o r studs w i t h p i n j o i n t e d ends and experimental u l t i m a t e 
loads. 

Specimen h 
mm N 

N 
u 

N 

N 
u 
^E 

1 55 10677 12800 1,20 
2 50 6795 9220 1,35 
3 55 10354 12360 1,20 
4 60 11714 13000 1,11 
5 55 12229 13000 1,06 
6 54,5 10684 11070 1,04 

Owing to the imperfections of the stud etc. the design compressive force 
N^^ i s lower than the Euler load Ng. The design loadbearing capacity i s 
determined as 

N , = k f bh 
cd c c 

According t o the CIB Code /4/, kc can be c a l c u l a t e d as 

f / T : r 

k^ = o . 5 [ ( i + (1 + • p ) ^ ^ ) - V (1 + (1 + nA f ^ ) ^ ^ ) - 4kg] 
m m 
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2^ 
°E ^ ^0 

where k„ = -z- = T — 
E f f 

c c 
X = slenderness r a t i o = Äĵ /i 
i = radius of g y r a t i o n 

= Euler b u c k l i n g s t r e s s 
f ^ = compressive s t r e n g t h p a r a l l e l t o the g r a i n 
f = bending s t r e n g t h p a r a l l e l t o the g r a i n m 

The i n i t i a l curvature i s expressed as 

e = qrX 

where r = radius of the core. 

The design loadbearing capacity was c a l c u l a t e d on the basis of the 
f o l l o w i n g assumptions: 

a) The maximum experimental compressive stresses according t o Table 2.6 
were used as the compressive s t r e n g t h p a r a l l e l t o the g r a i n . For 
specimens Nos. 4 and 5 the value a t the beginning of the creep stage was 
used. 

b) The r a t i o fc/fm P"^ equal t o 1. 

c) The experimental values £^ according t o Table 2.5 were used as t h 
modulus of e l a s t i c i t y . 

d) The i n i t i a l curvature i s the same as the r i s e a t the centre of the 
stud = Ij^/IOOO. The i n i t i a l curvature of the specimens was not 
measured, but since they were very s t r a i g h t , the value chosen i s a 
reasonable assumption. 

The r e s u l t s of c a l c u l a t i o n s are set out i n Table 3.2. 

Table 3.2. Comparison of the design loadbearing capacity ti^å 
c a l c u l a t e d according to /4/ and the experimental u l t i m a t e 
loads Ny. 

Specimen N , N 
ca u,exp 

cd 
kN 

1 9746 1,313 
2 6501 1,418 
3 9788 1,263 
A 10590 1,228 
5 11483 1,132 
6 10206 1,085 
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3.2 Member w i t h c y l i n d r i c a l convex end surfaces i n compression 

3.21 C r i t i c a l load 

During the t e s t s i t was noted t h a t the ends o f the studs not only r o t a t e d 
but also performed a r o l l i n g motion l i k e a wheel. I n order t h a t t h i s 
mechanism may be described i n a simple manner, i t may be assumed t h a t the 
end surfaces of the stud or the surfaces of the base are convex and 
c y l i n d r i c a l , see Figure 3.1. The way t h i s i d e a l i s a t i o n i s c a r r i e d out i s 
described i n Subsection 3.23. 

1 ' 

Figur 3.1. Convex c y l i n d r i c a l contact surfaces a t the end support 
of the member. 

As an a n l y s i s of a stud i n compression, of such a shape, i s c a r r i e d out i n 
Appendices A1-A3. The c r i t i c a l a x i a l f o r c e , i . e . the b i f u r c a t i o n load or 
Euler load Ng, i s c a l c u l a t e d as 

2 

The e f f e c t i v e l ength JKĵ  = 0£ i s dependent on the radius r of the contact 
surface and i s given i n Figure A3. The l e n g t h of the member i s JK, see 
Figure A1. I t i s evident t h a t there are two l i m i t i n g cases. The f i r s t 
occurs when r = 0 and corresponds t o Euler Case 2, w i t h p i n j o i n t e d ends and 
an e f f e c t i v e l e n g t h = JZ. The other extreme case i m p l i e s t h a t r = - and 
corresponds t o Euler Case 4, w i t h f i x e d ends and the e f f e c t i v e l e n g t h 
%Y = Ä/2. 

3.22 Eccentriccompressive force 

During stages of the cross s e c t i o n which occur when the member chars due t o 
exposure t o f i r e on one side, loading i s e c c e n t r i c w i t h an e c c e n t r i c i t y a 
w i t h respect t o the remaining cross s e c t i o n . See Figure A4. The s e c t i o n 
p r o p e r t i e s of the member can be c a l c u l a t e d when i t s d e f l e c t i o n i s known. 
Applying second order theory, see Appendix A2, the d e f l e c t i o n a t the 
midpoint i s 
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fl ra tan — 
^<f^ = % a x = - - ^> ^^-2) 

1 + ra tan ^ 2 

and the r o t a t i o n a t the end of the member i s 

aa tan ^ 
1 + ra tan — 

where a = / ^ 

For an i n c l i n e d support, see Figure A6, th e r e i s a load e c c e n t r i c i t y of 
magnitude 8r where 6 i s the magnitude of the i n c l i n a t i o n . The same formulae 
as above can thus be used, the e c c e n t r i c u t y being replaced by 8r. 

3.23 D e t e r n i n a t i o n o f t h e i ^ ^ 

I n a c t u a l f a c t , the shape of the support of the stud i s d i f f e r e n t from the 
i d e a l i s e d assumption t h a t the end surface i s c y l i n d r i c a l . With the a i d of 
the experimental r e l a t i o n s h i p s between a x i a l force and midpoint d e f l e c t i o n , 
see Figure 2.7, and the t h e o r e t i c a l expression f o r v^ax Equation 
(3.2), c a l c u l a t i o n s were made of the r a d i i r ^ of the contact surface as a 
f u n c t i o n of V j j ^ j j which s a t i s f i e s the c o n d i t i o n 

c a l c u l a t e d _ experimental 
^max " ^max 

i . e . t h a t geometrical shape of the end surfaces of the stud was c a l c u l a t e d 
which would have produced the same d e f l e c t i o n of the stud as t h a t obtained 
i n the t e s t s . 

I n the c a l c u l a t i o n s t he i n i t i a l curvature of the stud was ignored since the 
specimens were very s t r a i g h t . The e c c e n t r i c i t y was thus 

a = " 2 — + 8 r i 

Since specimens Nos.4-6 had an i n c l i n e d support a t the bottom of the stud 
and a h o r i z o n t a l support a t the upper end, the approximate value 8 = 0.0175 
was used, i . e . the mean value of the two support i n c l i n a t i o n s . 

The r e s u l t s of t h i s a n a l y s i s are set out i n Figure 3.2 a-£. I t i s a common 
c h a r a c t e r i s t i c of specimens Nos. 1-3 t h a t the radius r ^ assumes very l a r g e 
values f o r small d e f l e c t i o n s . For specimens Nos. 4-6 the radius does not 
assume very l a r g e values u n t i l the midpoint d e f l e c t i o n i s between 11 and 
16 mm. At t h i s p o i n t the r o t a t i o n v'(0) of the end of the member i s 
approximately 0.0175, i . e . the scune as the mean value of the i n c l i n a t i o n s 
of the support p l a t e s . A f t e r t h i s the radius continues t o decrease, and a t 
the same time the midpoint d e f l e c t i o n Vj,ax increases. This c h a r a c t e r i s t i c 
shape of the curves i s p a r t i c u l a r l y pronounced i n specimens Nos. 1, 3, 4 and 
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5, i . e . the ones which were f i t t e d w i t h 120 fflin wide rubber s e a l i n g s t r i p s 
or had no s t r i p s a t a l l . I n specinens Nos. 2 and 6 which had t h e narrower, 
only 70 mm wide rubber p r o f i l e s , the curves i n some cases had a maximua 
which was however c l e a r l y d i f f e r e n t from the h i g h values o b t a i n f o r the 
other specimens. 

At t h i s stage the stud was "balancing" on the narrow rubber p r o f i l e . For 
very large d e f l e c t i o n s , the curves f o r a l l specimens e x h i b i t approximately 
the same values of the i d e a l r a d i u s . I n t h i s p o s i t i o n , even i n the case of 
specimens Nos. 2 and 6, the end of the stud had r o t a t e d so much t h a t good 
contact had been obtained between the end of the sole p l a t e and the end 
p l a t e . This e v a l u a t i o n of the t e s t r e s u l t s was not c a r r i e d out f o r 
specimens Nos. 7 and 8 since t h e i r bending s t i f f n e s s was not determined w i t h 
s u f f i c i e n t accuracy. See Subsection 2.41. 

I n some cases, small i d e a l r a d i i were c a l c u l a t e d f o r small midpoint 
d e f l e c t i o n s Vj^g^j^. The probable reason f o r t h i s i s t h a t the small a x i a l 
f o r c e was not enough t o compress the rubber seal s u f f i c i e n t l y . See the 
r e s u l t s f o r specimens Nos. 1 and 2 i n Figure 3.2a and 3.2c. 

The experimental r e l a t i o n s h i p s between the i d e a l radius and the midpoint 
d e f l e c t i o n , c a l c u l a t e d w i t h the a i d of the a n a l y t i c a l model, e x h i b i t the 
same c h a r a c t e r i s t i c shape. P a r t i c u l a r l y f o r l a r g e values of Vj,ax» ^^e 
d i f f e r e n c e s between the d i f f e r e n t curves r e p r e s e n t i n g the l a s t cross 
s e c t i o n a l stage are f a i r l y s mall. 

Figure 3.2 a-f. I d e a l radius - midpoint d e f l e c t i o n curves f o r the studs. 
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I n order t h a t these curves may be used i n c a l c u l a t i n g the loadbearing 
capacity, an approximate expression was determined f o r the i d e a l radius by 
curve f i t t i n g . P a r t i c u l a r a t t e n t i o n was paid t o values i n the v i c i n i t y of 
the u l t i m a t e stage. The proposed expression i s 

where v ^ ^ j ^ and r ^ are i n mm. 

I n the formula, the i n c l i n a t i o n of the support i s taken i n t o c o n s i d e r a t i o n 
by u t i l i s i n g the r e l a t i o n s h i p between the r o t a t i o n a t the end support and 
the midpoint d e f l e c t i o n f o r an assumed s i n u s o i d a l e l a s t i c l i n e . The 
d e f l e c t i o n i s then described as (see Figure A1) 

V = V s i n ^ X 
max 2 

and the r o t a t i o n a t the end support i s 

V (0) = ^ V 
2 max 

Thus V = V*(0) -max n 

With S. = 2490 mm, we have 

^m.v = "̂ 3̂ v'(0) (3.5) max 

Expression (3.4) f o r the i d e a l radius i s p l o t t e d w i t h dashed l i n e s i n 
Figure 3.2 a-f. 

With the a i d of the approximate expression (3.4) f o r the i d e a l r a d i u s , the 
t h e o r e t i c a l r e l a t i o n s h i p between the a x i a l force and the midpoint 
d e f l e c t i o n , and the t h e o r e t i c a l u l t i m a t e load, was then determined f o r 
specimens Nos. 1-6. The t h e o r e t i c a l u l t i m a t e load i s defined as the load a t 
which the maximum compressive stress a t the centre of the member i s equal 
t o the experimental values Ojg^^ set out i n Table 2.6. I n the c a l c u l a t i o n s , 
the moduli of e l a s t i c i t y according t o Table 2.5 were used. 

Since the i d e a l radius i s dependent on d e f l e c t i o n ( i n a c t u a l f a c t i t i s 
dependent on end r o t a t i o n ) , the c o r r e c t i d e a l radius i s c a l c u l a t e d by 
i t e r a t i o n . A f t e r choosing an i n i t i a l value f o r r ^ , v^^^ i s c a l c u l a t e d 
according to (3 . 2 ) , whereupon a new value of r j ^ i s determined according 
t o ( 3 . 4 ) , and the procedure i s repeated u n t i l there i s good agreement 
between the new and o l d value of r ^ . 

The r e s u l t s of these c a l c u l a t i o n s are set out i n Figure 3.3 a-f and i n 
Table 3.3 where the values of the c r i t i c a l load Ng and the t h e o r e t i c a l 
u l t i m a t e load theor t a b u l a t e d . The l a t t e r i s also marked on the 
appro p r i a t e t h e o r e t i c a l l o a d - d e f l e c t i o n curve. The c r i t i c a l load N£ i s 
ca l c u l a t e d f o r the same i d e a l radius which occurs when the load i s equal to 
the u l t i m a t e load. 
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The agreement between the experimental and c a l c u l a t e d l o a d - d e f l e c t i o n 
curves i s good f o r specimens Nos. 1-3 and 5, and less good f o r specimens Nos. 
4 and 6. I t was only i n the case of specimen No. 6, f o r which the narrow, 
only 70 mm wide, rubber p r o f i l e had been used, t h a t values which were 
obviously on the unsafe side were obtained. 

Figure 3.3 a-f. Calculated and experimental l o a d - d e f l e c t i o n curves. 
The u l t i m a t e load according t o Table 3.3 i s marked on 
the t h e o r e t i c a l curve. 

15 1 

10 

5 
Specimen 1-55 

15n 

0 10 20 30 40 50 

Specimen 2-50 

0 10 20 30 40 50 60 
vmax ̂ ^̂ ^ 

Figure 3.3. a 

Specimen 3-55 

° 0 10 20 30 40 50 60 
vmax Inim] 

o-o 

Figure 3.3. b 

Specimen 4-60 

T 1 r 
0 10 20 30 40 50 60 70 80 

Vmax [mm] 

Figure 3.3. c Figure 3.3. d 



Specimen 

-1 1 r 
0 ^0 20 30 UO 50 60 70 80 

Specimen 6-54.5 

'max [mm] 
0 10 20 30 40 50 60 70 80 

vmox l")m] 

Figure 3.3. e Figure 3.3. f 

Table 3.3. Conparison of c a l c u l a t e d and experiiaental u l t i m a t e loads 
according t o the a n a l y t i c a l model "member w i t h c y l i n d ­
r i c a l end surfaces". 

Specimen 
N 

N u,exp N u,theor N u,theor 
u,theor 

mm kN kN kN 

1 55 32416 10974 12800 1,157 0,339 
2 50 17528 8177 9220 1,128 0,467 
3 55 28575 12428 12360 0,995 0,435 
4 60 39900 9915 13000 1,308 0,325 
5 55 37441 12295 13000 1,052 0,345 
6 54,5 29950 11975 11070 0,915 0,366 

3.24 The i n f l u e n c e of the stud cross s e c t i o n 

Owing t o r o t a t i o n of the stud a t the support, the p o i n t of contact w i t h the 
support, i . e . the p o s i t i o n of the a x i a l f o r c e , i s i n c r e a s i n g l y displaced 
towards one of the edges. At the opposite edge an i n c r e a s i n g l y wide gap i s 
formed between the end surface of the stud and the base, and a t u l t i m a t e 
stage t h i s gap may extend as f a r as the middle of the cross s e c t i o n , see 
Figure 2.9 and 2.10. This means t h a t the i . i t e r n a l forces of the stud a t t h i s 
stage are independent of the o r i g i n a l depth of cross s e c t i o n , and t h a t 
Equation (3.4) can be used also when the o r i g i n a l depth i s d i f f e r e n t from 
120 mm. 
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3.25 The i n f l u e n c e o f t h e l e n g t h o f _ t h ^ 

Expression (3.4) f o r the i d e a l radius was determined f o r the stud length 
S. = 2490 mm. I n order t h a t t h i s formula may be used f o r other stud lengths, 
i t must be modified. 

For a member w i t h rounded ends, the instantaneous radius which holds f o r a 
c e r t a i n load i s dependent only on the end r o t a t i o n v ' ( 0 ) . When two members 
(1) and (2) of lengths fi-) and S.2 r e s p e c t i v e l y have the same end r o t a t i o n 
v ' ( 0 ) , see Figure 3.4, we have the f o l l o w i n g r e l a t i o n s h i p when the 
d e f l e c t i o n curves v ( x ) are a f f i n e : 

Vmax1 ^ h 
Vmax2 ^2 
When the i d e a l radius i s expressed as a f u n c t i o n of v,nax' i n Equation 
(3.4), v^ax i s m u l t i p l i e d by the term fi/2490 where £ i s the a c t u a l stud 
length i n mm. I n c l i n a t i o n of the support i s taken i n t o c o n s i d e r a t i o n by 
m u l t i p l y i n g i t by fi/n. 

We thus have: 

r. = 1 (V 

7300 

max 2490 - ^ 8 
IT 

0,6 (3.8) 

I f the i d e a l radius i s expressed as a f u n c t i o n of the end r o t a t i o n v ' ( 0 ) , a 
c o r r e c t i o n w i t h respect t o d i f f e r e n t stud lengths i s not necessary. 

Figure 3.4. 
Maximum d e f l e c t i o n s of members of 
d i f f e r e n t lenghths f o r a f f i n e 
d e f l e c t i o n curves. 
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3.26 The i n f l u e n c e of support !^ c^P§9i^5J 

In order t o e l u c i d a t e the i n f l u e n c e of support i n c l i n a t i o n on the load-
bearing capacity, the u l t i m a t e load was c a l c u l a t e d f o r a stud of the dimen­
sions and m a t e r i a l values corresponding t o those of specimen No.6-54.5. The 
u l t i m a t e load was c a l c u l a t e d f o r d i f f e r e n t support i n c l i n a t i o n s 8 and i s 
p l o t t e d i n Figure 3.5 i n r e l a t i o n t o the u l t i m a t e load a t 8 = 0. The maximum 
compressive s t r e s s o^q =29,7 N/mm2 was used as the f a i l u r e c r i t e r i o n . 

o 

Figure 3.5. The i n f l u e n c e of the i n c l i n a t i o n of the support p l a t e s on the 
u l t i m a t e load of a w a l l stud w i t h the cross s e c t i o n a l and 
m a t e r i a l data according t o specimen No. 6-54.5. 

The support may have an i n c l i n a t i o n f o r a number of reasons. I t i s probable, 
however, t h a t lack of dimensional accuracy i n the timber can be excluded as 
one of these. Most studs are a t present cut w i t h a saw on a bench. I t i s 
only i n exceptional cases t h a t the timber i s c u t by hand and there i s a r i s k 
of u n i n t e n t i o n a l skew c u t t i n g . Since sole p l a t e s are a l s o planed, they have 
very good accuracy. On the other hand, i r r e g u l a r i t i e s i n the concrete slab 
or a d e v i a t i o n i n i t s surface from the h o r i z o n t a l may give r i s e t o support 
i n c l i n a t i o n . The aim i n modern b u i l d i n g i s t o avoid such de f e c t s . Concrete 
f l o o r s are given i n t e n t i o n a l slopes only i n the v i c i n i t y of f l o o r g u l l e y s . 
With studs spaced a t 600 mm, i t i s possible f o r two adjacent studs t o be 
s i t u a t e d i n such an area. However, such an i n c l i n a t i o n has no unfavourable 
e f f e c t on the loadbearing capacity of the e x t e r n a l w a l l i n the event of 
f i r e , since the base i s i n c l i n e d towards the b u i l d i n g on the side epxosed t o 
f i r e . I n the case of core w a l l s , however, the f l o o r g u l l e y may be placed on 
the side which i s not exposed t o f i r e , and i n such a case i t may have an 
unfavourable e f f e c t . 

A t y p i c a l value f o r the support i n c l i n a t i o n s which are possible i n p r a c t i c e 
due t o the d e f l e c t i o n s of roof trusses can be given w i t h regard t o the f a c t 
t h a t these are o f t e n l i m i t e d t o L/300 where L i s the span of the t r u s s . Such 
a d e f l e c t i o n i m p l i e s t h a t the r o t a t i o n of the r a f t e r of the t r u s s i s 
8 « 0.013 a t i t s end support. I f the bottom support i s h o r i z o n t a l , then the 
stud can be approximately replaced by one whose both supports have the 
i n c l i n a t i o n 6 = 0.065. According t o Figure 3.5, the r a t i o Ny/Ny^O * 0.96, 
i . e . the i n f l u e n c e of the support i n c l i n a t i o n i s very small. 
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3.27 Superposition of a x i a l f o r c e and transverse loading 

An ana l y s i s of a w a l l stud w i t h c y l i n d r i c a l convex end surfaces, which i s 
acted upon by both a x i a l and transverse loading, i s c a r r i e d out i n Appendix 
A4. The aim of t h i s a n a l y s i s was t o f i n d how these two loading cases are t o 
be superimposed. This i s of importance when both loading cases are studied 
i n d i v i d u a l l y by experiments. 

The i n t e r a c t i o n formula 

^ + ^ = k 
^d "d 

(3.10) 

was determined f o r a w a l l stud of a shape equal t o specimen No 2-50 and f o r 
the design compressive s t r e n g t h f ^ = 15 N/mm2. N̂ j and are the 
design values f o r only compressive and transverse loading r e s p e c t i v e l y . I n 
an unfavourable case the i n t e r a c t i o n curve may have the appearance as i n 
Figure 3.6 where the i d e a l radius r ^ had been determined according t o 
(3.4). The d e v i a t i o n from the l i n e a r r e l a t i o n s h i p w i t h k = 1 i s very small. 

Figure 3.6. I n t e r a c t i o n curve f o r compressive force N and bending moment 
M due t o transverse load. The f a i l u r e c r i t e r i o n i s the com­
pressive s t r e n g t h f ^ - The geometrical shape i s the same as 
f o r specimen No 2-50. 

The l e a s t value of k occurs f o r M/M(j = 0.5. I n order t o f i n d i n what way 
'^min depends on the s u s c e p t i b i l i t y t o buckling of the stud, a parametric 
study was c a r r i e d out. Since the slenderness r a t i o S-\^/i of the stud i s 
dependent on the i d e a l r a d i u s , and since t h i s i s u s u a l l y d i f f e r e n t f o r 
determination of and N(j, the compressive s t r e n g t h f ^ was v a r i e d 
instead. The q u a n t i t y k ^ j i ^ shown as a f u n c t i o n of the r a t i o E/fc-
This study was made on the assumption t h a t the i d e a l radius i s constant and 
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equal t o 1000 mm, and the assumption t h a t the i d e a l radius v a r i e s according 
t o Equation (3.4). The r e s u l t s of t h i s parametric study are given i n 
Figure 3.7. Small values of E/f^ imply t h a t the compressive f o r c e i s near 
the c r i t i c a l compressive force Ng. 

The r e s u l t s f o r k j ^ ^ ^ show t h a t k i n (3.10) can be approximately put equal 
to 1. The i n t e r a c t i o n r e l a t i o n s h i p i s thus 

and may produce r e s u l t s which are a l i t t l e on the unsafe side. 

(3.11) 

e 
jic: 

1,025 

1,0 

0,975 

0,95 

r=lOOOmm 

r 

1000 2000 3000 5000 10000 
E/fc 

Figure 3.7. Relationship betwee n kjjjj^jj and the q u a n t i t y E/f^. Cross 
s e c t i o n a l data and modulus of e l a s t i c i t y as f o r specimen 
No 2-50. 
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4. CONCLUSIONS 

The previous chapter describes an i n v e s t i g a t i o n of the a p p l i c a b i l i t y of two 
a n a l y t i c a l models f o r the d e s c r i p t i o n of the s t r u c t u r a l behaviour of 
a x i a l l y loaded studs subject t o the a c t i o n of f i r e on one side. 

The a n a l y t i c a l model discussed i n Section 3.1 i n which the ends of the 
studs are assumed t o be p i n j o i n t e d considerably underestimates the load-
bearing capacity. I t i s only f o r the specimens w i t h very large support 
i n c l i n a t i o n s t h a t there i s b e t t e r agreement between the t h e o r e t i c a l and 
experimental u l t i m a t e loads. The assumption concerning p i n j o i n t e d supports 
which i s unfavourable f o r the loadbearing capacity i s t o some extent 
compensated f o r by the unfavourable i n f l u e n c e of the support i n c l i n a t i o n . 

The second a n a l y t i c a l model t r e a t e d i n s e c t i o n 3.2 describes the s t r u c t u r a l 
behaviour considerably b e t t e r . The stud i s assumed to be placed between 
r i g i d end pla t e s and the end surfaces of the stud area assumed t o be convex 
and c y l i n d r i c a l . Even though the experimental basis f o r det e r m i n a t i o n o f 
the i d e a l radius of the end surfaces has been of small extent, the support 
co n d i t i o n s f o r the d i f f e r e n t specimens showed very large d i f f e r e n c e s . The 
studies showed t h a t i t i s possible t o describe the i d e a l radius by an 
approximate expression and t o ob t a i n good agreement between t h e o r e t i c a l and 
experimental r e s u l t s . I t i s only i n the case of specimens f i t t e d w i t h 
sealing s t r i p s which are considerably narrower than the depth of the stud 
t h a t the approximate expression d i f f e r s from the experimental r e l a t i o n ­
ships. Compared w i t h the wide s t r i p s , these narrow rubber s e a l i n g s t r i p s 
represent a p o i n t of weakness. When the rubber s e a l i n g s t r i p i s of the same 
width as the depth of cross s e c t i o n , there i s no s i g n i f i c a n t d i f f e r e n c e 
between the loadbearing c a p a c i t i e s obtained. I t i s possible f u r t h e r t o 
improve accuracy by b e t t e r curve f i t t i n g f o r the expression (3.4). However, 
i n order t h a t an expression of greater general v a l i d i t y may be obtained, 
more experiments are probably necessary. 

This second a n a l y t i c a l model provides a considerably b e t t e r d e s c r i p t i o n of 
the r e a l s t r u c t u r a l behaviour. I t i s t h e r e f o r e possible t o study the e f f e c t 
of d i f f e r e n t parameters by c a l c u l a t i o n s . 

At present, the thermal e f f e c t s of f i r e on the s t r e n g t h and s t i f f n e s s of 
small cross sections i s i n s u f f i c i e n t l y known. For t h i s reason, the use of 
only t h e o r e t i c a l methods f o r det e r m i n a t i o n of the loadbearing capacity i n 
the event of f i r e i s o f t e n f a r too u n r e l i a b l e , and f i r e t e s t s are t h e r e f o r e 
unavoidable. However, t e s t s need not comprise d i f f e r e n t support c o n d i t i o n s 
such as i n c l i n e d supports, since these can be d e a l t w i t h separately by 
means of the a n a l y t i c a l model. 

The t h e o r e t i c a l studies have shown t h a t complete design f o r a x i a l and 
transverse loading can be c a r r i e d out by l i n e a r s u p e r p o s i t i o n of these two 
loading cases. 

I n broad o u t l i n e , the f o l l o w i n g procedure may be adopted i n f i r e t e s t i n g 
loadbearing timber stud w a l l s : 

- F i r e t e s t s are c a r r i e d out separately f o r a x i a l and transverse loads. 
Since the primary i n t e r e s t i s t o determine the loadbearing capacity of 
the c o n s t r u c t i o n a f t e r a c e r t a i n f i r e r esistance period, e.g. according 
t o code requirements, the f i r e t e s t i s discontinued a f t e r t h i s time. 
Both the a x i a l and transverse load are maintained constant during the 
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e n t i r e f i r e t e s t , and t h e i r magnitude i s such as t o ensure t h a t f a i l u r e 
does not occur before the s t i p u l a t e d time. Load i s then increased u n t i l 
f a i l u r e occurs. 

The loadbearing timber stud w a l l can thus be designed f o r the loading case 
f i r e plus f o r any other loads from the roof (snow) or a t t i c f l o o r ( l i v e 
loads), or f o r loads a c t i n g perpendicular t o the plane of the w a l l (wind 
loads). 
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APPENDIX 

A1. Determination of the c r i t i c a l load f o r a member w i t h c y l i n d r i c a l 
convex end surfaces 

The member i n compression i s assumed t o have c y l i n d r i c a l end surfaces and 
i s placed between two p a r a l l e l support p l a t e s . The b i f u r c a t i o n load i s 
characterised by the f a c t t h a t the member i s i n e q u i l i b r i u m even i n the 
d e f l e c t e d p o s i t i o n , see Figure A1. The p o i n t of a p p l i c a t i o n of the load has 
then been displaced somewhat i n the d i r e c t i o n of d e f l e c t i o n , see Figure A2. 

Figure A1. 
Member i n d e f l e c t e d e q u i l i b r i u m 
p o s i t i o n . 

Figure A2. 
E c c e n t r i c i t y f o r loaded member i n 
the d e f l e c t e d p o s i t i o n . 

For small deformations, the e c c e n t r i c i t y of the load i s 

e * (p r * V' (0) r 

The bending moment on the member i s then 

M(x) = N t v ( x ) - V'(0) r ] 

With v "(x) = we have EI 

(1) 

^" ^ l l ^ ' ( ^ ^ ' 
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With 0 2 = 1 ^ 

the d i f f e r e n t i a l equation of the i n s t a b i l i t y problem i s 

v" + a^v = a ^ v ' ( 0 ) r ( 3 ) 

The general s o l u t i o n i s of the form 

Thus 

v ( x ) ' s i n ax + cos ax + v ' ( 0 ) r 

v' ( x ) = a cos ax - a s i n ax 

0 

From the boundary c o n d i t i o n s v ( 0 ) = 0 and V ( 2 ) = 0, we have 

= - V ' ( 0 ) r 

and = - V ' ( 0 ) r tan | ^ 

The s o l u t i o n of the d i f f e r e n t i a l equation i s then 

v ( x ) = - v ' ( 0 ) r tan s i n ax - v ' ( 0 ) r cos ax + v ' ( 0 ) r ( 4 ) 

and 
afi 

v'(x) = - v ' ( 0 ) ra tan i : ^ ) cos ax + v ' ( 0 ) ra s i n ax ( 5 ) 
V ( 0 ) = - V ' ( 0 ) ra tan | ^ 

The buckling c o n d i t i o n i s thus 

a£ 
ra tan 2~ ~ 

which can be transformed i n t o 

^ aje 1 tan T~ = " 2 ra 

nS. 1 fi 
and tan J - = - ^ - (6) 

0 

The roots a£ of the equation are determined f o r d i f f e r e n t values of -. 
With the e f f e c t i v e l e n g t h Jdĵ  expressed as ^ 

the s o l u t i o n can be described as p = f ( r / j e ) as shown i n Figure A3. 
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Figure A3. E f f e c t i v e l e n g t h , expressed as Jdĵ  = 3Ä, as a f u n c t i o n of the 
end surface radius. 

A member w i t h p i n j o i n t e d ends corresponds t o the case r = 0. The e f f e c t i v e 
l e n g t h f o r t h i s case i s Äĵ  = jj , which i s the e f f e c t i v e l e n g t h f o r Euler's 
second case. 

The other extreme case corresponds t o r = -, i . e . the ends of the member 
are plane. 

I n t h i s case, the e f f e c t i v e length i s equal t o Ä/2, which means t h a t 
Euler's f o u r t h case ap p l i e s when both ends of the member are f i x e d . 
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A2. Member w i t h c y l i n d r i c a l convex end surfaces acted upon by e c c e n t r i c 
compressive load 

When the ends of the member are shaped as shown i Figure A4, loa d i n g i s 
ecc e n t r i c r i g h t from the beginning. As the member d e f l e c t s , the ends also 
r o t a t e , and the p o i n t of a p p l i c a t i o n of the load i s displaced i n the 
d i r e c t i o n of d e f l e c t i o n . 

Figure A4. 
Member under e c c e n t r i c loading. 
Point of a p p l i c a t i o n of load 
i n unloaded and loaded member. 

Figure A5. 
E c c e n t r i c a l l y loaded member i n 
d e f l e c t e d p o s i t i o n . 

Taking moments, we have 

M(x) = N [ v ( x ) + a - v'(0) r ] (7) 

2 N . 
S u b s t i t u t i o n of EIv" = -M and a - gives the d i f f e r e n t i a l 
equation of the problem 

v" + a^v = t v ' ( 0 ) r - a] (8) 

The general s o l u t i o n i s of the form 

v = s i n ax + cos ax + v'(0) r - a 
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We thus have 

v' = C^a cos ax - C^a s i n ax 

. . Ä From the boundary c o n d i t i o n s v(0) = 0 and V = 0, we have 

C2 = a - V' (0) r 

and = [a - v'(0) r ] tan |^ 

The s o l u t i o n of the d i f f e r e n t i a l equation i s then 

a£ 

V = ta - v'(0) r ] tan y- s i n ax + [a - v'(0) r ] cos ax + v'(0) r - a 

and, a f t e r rearrangement, 

V = [a - v'(0) r ] (tan |^ s i n ax + cos ax - 1) (9) 

I n t h i s expression, v'(0) i s s t i l l unknown. We have 
V'(0) = a[a - V*(0) r ] tan |^ 

A f t e r some rearrangement, we have 

aje 
aa tan — 

v'(0) = ^ (10) 
1 + ra tan 

Subs t i t u t e d i n t o ( 9 ) , t h i s expression y i e l d s 

aje 
ra tan j-

V = a[1 r-] (tan y - s i n ax + cos ax - 1) (11) 
+ ra tan 2~ 

A f t e r s u b s t i t u t i o n of x = ^ and some rearrangement, the midpoint d e f l e c ­
t i o n i s obtained as 

aÄ 
. ra tan 

^^2^ = - — ^ ^ - ^12) 
1 + ra tan 2— cos 

S u b s t i t u t i o n of (9) and (10) i n t o (7) gives the moment d i s t r i b u t i o n f o r 
the member. The maximum moment a t the centre i s obtained by s u b s t i t u t i o n of 
(19) and (12) i n t o ( 7 ) . We thus have 

a£ 
je Na y 4) = ^ a x = - ^ t ^ n 3 ) 

cos 2 ~ 1 + ra tan Y' 
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or 

M = NaK 
max 

^ ra tan 
where the m a g n i f i c a t i o n f a c t o r K = x [1 - r ] (14) 

COS Y~ 1 + ra tan 2— 

I n order t h a t Mj^ax determined, the values of aS. and ra 
must be determined. We have 

Thus afi = Ä/|Y (15) 

I n a d d i t i o n we have 

ra = a£ I (16) 

There e x i s t s a s t r e s s problem f o r values N < Ng. I f , on the 
other hand 

N - M - ^ EI 

A . . . 
M(2) assumes i n f i n i t e l y l a r g e values, which can be e a s i l y shown by 
s u b s t i t u t i o n . 

Choose, f o r instance, ^ = 0,25. I n Figure A3 we read p * 1,64. 

Then 

2 N 
« = E I 

With N = NE, we have 

2 . 2 
a 

and aje = 
p 

Thus, afi = T T / 0,64 = 4,308 och med (16) 
ra = 4,908 « 0,5 = 1,227 

S u b s t i t u t i o n of these values i n t o (14) y i e l d s the m a g n i f i c a t i o n f a c t o r 
K = 167. A more accurate determination of p would have r e s u l t e d i n a s t i l l 
l a r g e r m a g n i f i c a t i o n f a c t o r . This can be done by f i n d i n g a value of aJK 
which s a t i s f i e s the b u c k l i n g c o n d i t i o n (6) a l i t t l e b e t t e r . 
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I n order t o c a l c u l a t e the maximum stresses i n the member, we superimpose 
the stresses due t o normal force and moment. I n the u l t i m a t e l i m i t s t a t e , 
we have 

Ö a 
^ + / ^ 1 (17) 
c m 

where o = 7 c A 

a = 
M 
max m W 

and f c and fm are the c h a r a c t e r i s t i c compressive and bending strengths. 
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A3. The i n f l u e n c e of i n c l i n e d support p l a t e s on a member w i t h c y l i n d r i c a l 
convex end surface acted upon by a compressive f o r c e 

The c o n d i t i o n s i n conj u n c t i o n w i t h an i n c l i n e d support p l a t e are i l l u s t r a ­
t e d i n Figure A6. For small i n c l i n a t i o n s , t he r e s u l t a n t e c c e n t r i c i t y of 
load i s 

a* = 8r 

As the member d e f l e c t s and the ends of the member consequently r o t a t e , the 
po i n t of a p p l i c a t i o n of the load i s displaced by v'(0) r . The c a l c u l a t i o n s 
are thus not d i f f e r e n t from the case t r e a t e d i n Appendix A2, and the 
s o l u t i o n given there can be ap p l i e d f o r the load e c c e n t r i c i t y a'. 

When the support i s i n c l i n e d and the load i s also a p p l i e d w i t h an 
e c c e n t r i c i t y , the load e c c e n t r i c i t y i s increased by 9r. 

a'= 0r 

Figure A6. E c c e n t r i c i t y due t o i n c l i n e d support 
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A4. Eccentric a x i a l f o r c e and transverse load on a member w i t h c y l i n d r i c a l 
convex end surfaces 

The e f f e c t of a transverse load i n a d d i t i o n t o the e c c e n t r i c a x i a l force i s 
studied most e a s i l y by assuming a s i n u s o i d a l moment d i s t r i b u t i o n when the 
a x i a l f o r c e i s zero. I n t h i s case the transverse load q i s also s i n u s o i d a l , 
see Figure A7. Taking moments f o r the member, we have 

M(x) = Ntv(x) + a - v'(0) r ] + M s i n i x 
o £ 

(18) 

where M̂  i s the maximum bending moment due t o transverse loading. 

2 N 
With EIv" = -M och a = the d i f f e r e n t i a l equation of the problem i s 

V" + a^v = a^ [ v ' { 0 ) r - a] - ̂  s i n | x (19) 

The p a r t i c u l a r s o l u t i o n has the form 

V = [ V (0) r - a] + s i n I x 
By s u b s t i t u t i o n i n t o (19), we have 

O 

EKa^ - ^ ) 

Figure A7. Member w i t h e c c e n t r i c a x i a l f o r c e and transverse load 
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The homogeneous s o l u t i o n i s of the form 

V = C.J s i n ax + C2 cos ax 

where = [a - v ' ( 0 ) r ] tan |^ 

C2 = a - v ' ( 0 ) r 
see A2. 

We have 

Thus 

v'(x) = aC^ cos ax - aC2 s i n ax + ^ cos j x 

vMO) = aC, + f 

A f t e r s u b s t i t u t i o n of the expressions f o r and and some rearrangement, 
we have 

. a.8 Ti 0 aa tan -^r- - T 2 S. o 2 
EI (a^ - ^ ) 

v ' ( 0 ) = 5 — ( 2 0 ) 
1 + ra tan Y~ 

The s o l u t i o n of the d i f f e r e n t i a l equation i s thus 

ail '̂ o 
V = [a - v ' ( 0 ) r ] (tan Y~ «^ + '^^^ " ) " 2 — J ^ 

EI (a ^) 
r 

(21) 
and the maximum d e f l e c t i o n a t the centre i s obtained a f t e r some rearrange­
ment as 

v ( f ) = (a - V ( O ) r ) ( - 1 - ^ - 1) f—j- (22) 
T EI (a^ -

r 
The maximum bending moment a t the centre i s thus 

M = M(4) = N[v(|) + a - v ' ( 0 ) r ] + M (23) max 2 2 o 
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A5. Member with i n i t i a l curvature and c y l i n d r i c a l convex end surfaces 
acted upon by a compressive force 

The e f f e c t of the i n i t i a l curvature of the member can be determined by 
replacing i t by the ef f e c t of an equivalent transverse load. 

Assuming a sinusoidal shape of the i n i t i a l curvature 

( V / £ t • If X 

the maximum bending moment at the centre i s 

= Nv^(f) (24) o 0 2 

The solution given i n Appendix AS can thus be used by inserting the above 
expression (24) into Equations (21), (22), and (23). 
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