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ABSTRACT

This thesis deals with value recovery and production control in the forestry–wood chain for 
improved competitiveness of sawmills through higher profit and better adaptation to product 
requirements of the customers. The subject was approached using simulation technique with a 
database of virtual logs and a sawing simulator capable of processing the logs in the database.  

CT images of young Scots pine (Pinus sylvestris) sawlogs were processed with artificial neural 
networks (ANN) for identifying knots in sapwood where the contrast in the images is low. ANN 
classifications were deemed a feasible method where traditional image analysis methods failed. 
Further processing of the classified image allowed for parametric descriptions of the logs in a 
format compatible with the previously established Swedish Pine Stem Bank (SPSB).  

Static models of stem shape and interior knot structure were used to create stems that were 
also compatible with the SPSB. Processing the stems with the sawing simulator demonstrated the 
possibility of predicting timber grade recovery and volume yield from stands based on site, stand 
and tree characteristics. It was also shown that timber values in logs can be predicted using 
variables derived from 3-dimensional (3D) scanning of stems’ external geometry as well as from 
3D scanning in combination with X-ray log scanning. The improvement achieved with the 
combined scanning was rather low compared to using 3D scanning alone. 

Results of a study of bucking methods, log sorting methods and production control 
showed that the more detailed information the bucking and log sorting decisions are based on, 
the higher the value recovery. Furthermore, the more processing stations involved in production 
control, the better are the demand targets met.  

In a study aiming at increased share of target board lengths, different bucking alternatives 
were evaluated. It was concluded that optimizing forest operations, value recovery and 
production as separate entities will not produce optimal results. A case study of a sawmill where 
the length of the timber was of high interest showed that increasing the share of target lengths of 
small dimensions can only be done at a relatively high cost in terms of volume yield loss. It was 
also shown that log classes should be defined with varying diameter limits for different log 
lengths at the conventional diameter-based log sorting. In order to meet the desired length 
distribution of the timber, it is necessary to alter the log length distribution, and this can be done 
with adaptive control heuristics that dynamically updates control log prices during bucking. 

It is concluded that there is an unexploited value potential in the forestry–wood chain 
which can be reached using modern measurement techniques and that a better characterization 
of the wood raw material will facilitate an improved customer-order orientation. 

Keywords: ANN, bucking, CT, cross-cutting, image analysis, knots, log geometry, log scanning, log 
sorting, models, order oriented, outer shape, production control, sawing, simulation, Scots pine 
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1. INTRODUCTION 

1.1. Background
The sawmill industry is competing in a global market. There is competition between companies 
as well as between wood and other materials. Strategies used to face the competition are 
increased efficiency and better adaptation to requirements put by the markets. As the wood raw 
material represents approximately two thirds of a sawmill’s total costs, the level of efficiency in 
utilizing the wood will obviously have a large impact on the economic results. Meeting market 
requirements means producing timber with dimensions and qualities that satisfy the needs and 
expectations of the customers. When shifting from a bulk-oriented strategy towards a customer-
oriented strategy, it is clear that characterisation of wood early in the forestry–wood chain and 
communicating requirements between different processing units are key elements for producing 
the right products efficiently. Developments of computers have facilitated simulations as a 
technique used to study complex systems at low cost and with good control. Computer 
simulations are widely used, accepted and recognized as a valuable tool for R&D. The large 
variation of wood properties that are mostly hidden within the trees and logs along with the 
complex chain of activities involved in converting trees to timber makes simulations suitable for 
studies within the forestry–wood chain. The previously established Swedish Pine Stem Bank 
(SPSB) is a database of 198 mature Scots pine (Pinus sylvestris) stems (Grönlund et al. 1995). The 
SPSB holds parametric descriptions of the 3-dimensional outer shape and interior knot structure 
of stems, which together with sawing simulation software can be used to study activities within 
the forestry–wood chain and monitor the outcome in terms of products produced. A sawing 
simulator program (Saw2003) able to read and process the stems in the SPSB has been 
developed. Features of the software are given in detail in appendices A–D. 

Thinning in younger stands is estimated to have a large potential of increased harvest in 
Sweden. Combined with a change of demand towards smaller dimensions of wood products, 
there has been interest in augmenting the stem bank with younger Scots pine stems. The SPSB 
was built using computer tomography (CT) of the stems. From the CT images, external geometry 
and internal knot structure could be extracted. Young stems appear differently in CT images, and 
as a consequence, other methods are needed for extraction of internal knot structure (Papers I 
and II). 

Knot properties are of great importance for many solid wood products. The quality grade 
and value of a product are largely determined by the size, type and distribution of its knots, and 
economic gains may be achieved by picking the right raw material and by processing it more 
intelligently based on knowledge of the interior knot structure of trees and logs (Steele et al. 1993; 
Todoroki 2001). Grade classification of solid wood products serves as a label of suitability for 
different end uses; e.g., construction, appearance or window framing. Not knowing the grade 
distribution of boards until after the sawing process is a great hindrance to fully applying a 
customer-oriented production strategy. Indirect estimates of knot properties and stem shape of 
standing trees through prediction models may be useful for tactical decisions and thus should be 
evaluated (Paper III). Online measurements of log shape during log sorting at sawmills have 
proven useful for prediction of board grades (Grace 1994; Jäppinen & Beauregard 2000; 
Lundgren 2000; Oja 2003). However, at the log-sorting stage, the potential of the raw material to 
fulfil requirements has already been reduced by the decisions taken when the trees were bucked 
(cross-cut) to logs, hence the desirability of the application of predictions of the boards’ 
properties in the bucking operation (Paper IV). 

When the needs of timber specified by thickness, width, length and grade are to be 
communicated through the chain from sawmill to forest operations, a difficult but important step 
is the conversion and link of timber dimensions to log dimensions. Today, log sorting at sawmills 
is primarily controlled by log diameter, and bucking is controlled by log price lists with individual 
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prices on different combinations of log diameter and log length. Modern measurement 
techniques such as three-dimensional (3D) scanning practiced at sawmills and CT scanning used 
in research allow for an interesting alternative to the communication problem. With data acquired 
with any of these devices in combination with sawing simulations, the outcome of timber from 
individual logs can be predicted, thus easing the need to couple timber dimensions to log 
dimensions. More detailed characterisation of logs and stems may also allow for higher value 
recovery. Thus the influence on value recovery and production control of different degrees of 
characterisation of the raw material has been studied (Paper V). When specific products are 
targeted in production and different alternatives are evaluated, optimizing each activity 
individually may lead to results that are not globally optimal to the chain of operations. To obtain 
good economic results, the chain must be seen in its entirety (Usenius 1996). In Paper VI the 
production economy of a sawmill is evaluated for different bucking alternatives aimed at 
increasing the share of certain lengths of timber. In order to produce products with the desired 
lengths, it is also necessary to have a deep understanding of the relation between log dimensions 
and final board lengths. Once the model is established, it is possible to optimize the process by 
economic means using Linear Programming (LP) (Hillier & Lieberman 1995) (Paper VII). 

1.2. Measuring knot parameters in CT images of young Scots pine sawlogs 
The X-ray based CT scanner measures the transmission of an X-ray beam through an object. The 
transmitting X-ray source and the detector array on the opposite side of the object are rotated 
and thus measure the transmission in many direction of a cross-section of the object. From this 
data the linear attenuation coefficient of each small volume element within the cross-section is 
calculated with the aid of filtering methods such as Fast Fourier Transform (FFT). The 
coefficients are further scaled to CT numbers, which gives the coefficients in relation to the linear 
attenuation coefficient in water. The CT numbers thus obtained can then be mapped to a digital 
grey-scale image providing visual information that can be interpreted directly by the viewer or 
further processed using image processing and analysis. Such an image provides an approximate 
representation of the density variations within the cross-section, as the linear attenuation 
coefficients are highly density dependent (Lindgren 1991). Images yielded when scanning a 
specimen, e.g., a log, at many positions can be grouped together into an image stack that provides 
a full three-dimensional representation of the density variations within the specimen. From this 
image stack, new cross-section planes can be calculated in any direction. In order to automatically 
segment and extract properties from the images other than the density of small volume elements, 
extensive use of image processing is necessary. Much research effort has been dedicated to 
feature extraction from CT images of softwoods (McMillin et al. 1984; Funt & Bryant 1987; 
Grundberg & Grönlund 1992) as well as hardwoods (Zhu 1991; Bhandarkar et al. 1999).

When processing CT images of newly cut fresh logs, it becomes obvious that the contrast 
between the features of interest should be high and that the variations within each feature class 
should be low for successful segmentation and classification. Within softwoods the contrast 
between the denser knots and the lighter surrounding wood is high when the knots are situated in 
the heartwood, while it is very low when the knots are situated in sapwood, as high water content 
adds to the density of sapwood and the density sums up to the same level as the knots. 
Unfortunately, young Scots pine sawlogs have only a small proportion of heartwood, or are 
totally lacking in heartwood. Furthermore, with wood being a biological material, the variations in 
density and appearance are large. The difficulties of detecting knots in the sapwood have also 
been recognized by Andreu & Rinnhofer (2003) for Norway spruce (Picea abies) and by Flood et 
al. (2003) for Scots pine. While traditional image processing such as filtering and thresholding 
failed to segment knots in young Scots pine sawlogs, the knots were clearly detectable by visual 
examination of the images on a computer screen. This annoying fact led to the conclusion that 
the human brain has image processing capabilities worth trying to mimic, and attention was 
drawn to the field of Artificial Neural Networks (ANN). Feed-forward backpropagation ANN 
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(Hassoun 1995) has been used by Li et al. (1996), and Schmoldt et al. (2000) has demonstrated 
the feasibility of using ANN for segmentation and labelling of features in several hardwood 
species, while Hagman & Grundberg (1995) used ANN for classification of knot type in CT 
images of Scots pine. 

1.3. Sawing simulations 
With the large inherent variation in wood, every individual stem and sawlog is unique. 
Furthermore, the processing of a log into boards, chips and sawdust is an irreversible process; 
thus each log can only be processed once. This implies that research within a system involving 
the processing of logs into timber is hard to realize with actual studies in the field or laboratory 
for several reasons: 1) the variation of the input raw material cannot be controlled; 2) variations 
in processing cannot be controlled; hence 3) dimensioning the studies for statistical analysis will 
be too costly. The solution is to use simulation tools. The combination of a database of virtual 
logs and a sawmill simulator able to read and process the logs makes comparisons of the 
outcome of sawing possible on identical raw material and at low cost. Furthermore, sawing 
simulation software able to predict the outcome of real logs may be used as an online application 
within the sawing process for automatic decision making and process control.  

Early sawing simulators treated the logs as truncated cones with circular cross-sections 
(Cummins & Culbertson 1972; Richards 1973; Johansson 1978). Later sawing simulators handle 
more realistic log geometries (Singmin 1980; Lewis 1986; Occena et al. 1988; Funk et al. 1993), 
while the most recent also include the inner features of sawlogs (Todoroki 1996; Björklund & 
Julin 1998; Chiorescu & Grönlund 1999; Usenius 1999; Bhandarkar et al. 2002). Yield attributes 
estimated with sawing simulations may also provide input to bucking optimizations. The 
combined sawing and bucking models presented by Faaland & Briggs (1984), Reinders & 
Hendricks (1989) and Maness & Adams (1991) used simplified log models, while the tool 
presented by Björklund & Julin (1998) handles more realistic log geometries. Usenius (2001) 
presents a system of simulation modules with a sawing simulator as a central part that together 
are used for an integrated approach to optimization of the conversion of trees to timber. The 
simulator Saw2003 presented here operates on true shape virtual logs and is capable of 
integrating bucking decisions based on yield attributes. Appendices A–D provide further 
information on the interface, capabilities and internals of the software. The appendices were 
included as an aid to deeper understanding of how the results of the studies were obtained and 
for the purpose of gathering the author’s work in one place (this thesis). 

1.4. Predicting grade and value recovery in logs 
At a strategic level, the grade distribution of different stands is valuable information for wood 
procurement, i.e., which stands will match the sawmill’s targeted market segment the best and 
vice versa. At a tactical level, the grade distribution of different stands is valuable information for 
scheduling the harvesting either in order to avoid fluctuations in grade distribution or in order to 
fulfil orders. At the operational level, when the stem is being bucked into logs, the spatial grade 
distribution within a stem is together with the stem’s geometry valuable information in order to 
obtain high value recovery and to produce the desired products. Furthermore, the grade 
distribution of a specific log is valuable information connecting grade to the dimensions of the 
board when a sawing pattern is assigned to the log at the log sorting station, thus giving the final 
product.

Researches aiming at modelling quality features such as interior knot structure of trees and 
logs or predicting the grade of sawn products follow alternative approaches. One alternative is to 
use growth models together with models of taper, live crown and branching (Houllier et al. 1995; 
Briggs 1996; Barbour et al. 1997; Ikonen et al. 2003). These models recursively predict the 
development of trees over a long period, arriving at stem shape and internal knot structure at the 
time of harvest. The second approach models the static state of stem shape and interior knot 
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structure directly from site, stand and tree characteristics (Høibø et al. 1996; Moberg 2000). While 
the recursive approach is biologically appealing, there are statistical implications, as errors in one 
model might be magnified over time or carried over to other integrated models (Houllier et al. 
1995). Moreover, the models depend on historical data, which can be difficult to assess. The 
static state models have the advantage that they can be based on preharvest measurements. The 
static models developed for Scots pine and Norway spruce by Moberg (2005) and Moberg et al. 
(2005), if integrated with sawing simulations, provide a system for strategic and tactical planning 
within a customer-oriented forestry–wood chain in Sweden. However, before such a system is 
applied, its ability to predict timber volume and grade recovery should be verified. 

A third alternative for modelling quality features is to directly predict grade from 3-
dimensional scanning of logs’ external geometric properties (Jäppinen & Beauregard 2000; 
Lundgren 2000) or from information on whorls’ properties revealed with X-ray scanning 
(Grundberg & Grönlund 1998; Oja et al. 2003) or from a combination of both methods (Oja et 
al. 2004). These models do not predict the interior knot structure, but the grade, which is a 
consequence of knot structure. Currently, several sawmills are using such grade predictions for 
online control of the log sorting operation. However, at the log sorting stage, the potential of the 
raw material to fulfil requirements has already been reduced by the decisions taken when the trees 
were cut to logs. The combination of grade prediction with yield prediction obtained from 
simulated sawing with the log’s 3D profile as input makes it possible to calculate the outcome of 
a log and hence its correct value. If stems are scanned and the values of logs not yet cut from the 
stems can be calculated, then the bucking operation, as well, can be based on product 
requirements and orders rather than today’s log-price-list–based bucking. Thus, grade predictions 
of stem segments are desirable for a customer-oriented production at the operational stage of 
bucking.

1.5. Controlling the production of boards 
The conversion of forest resources to solid wood products is a chain of closely related activities. 
Decisions taken at one stage will have consequences for the following ones. At an early stage, the 
bucking operation occurs. At this stage, where the stem is cut into sawlogs, the dimensions of a 
particular log (i.e., length and small-end diameter) place upper limits on the length, width and 
thickness of the timber that can be sawn from it. While shorter and smaller timber dimensions 
can be sawn from the same log, production economy will suffer as the volume yield becomes 
low. This means that undersized logs, as well as oversized logs, are undesirable, and it emphasizes 
the importance of high measurement accuracy (Chiorescu & Grönlund 2001). The second step in 
the conversion chain determining the dimensions of the timber is when breakdown patterns are 
assigned to the logs, either in a log sorting station for batch processing or in line with the 
breakdown machinery. Accurate descriptions of the logs’ cross-sections are important for making 
the right sorting decisions (Skatter et al. 1998). After primary breakdown the sideboards are 
edged, setting their widths, and eventually all boards are trimmed to their final length. Optimizing 
each activity individually is not likely to produce results that are globally optimal to the forestry–
wood chain. Furthermore, in order to control the production of boards targeting current orders 
or plans, the ability to communicate the needs to all processing stations is favourable.  

Traditionally, a log price list with individual prices on different combinations of log 
diameter and log length works as the interface through which the sawmill communicates its need 
for the supply of specific log dimensions. The generation of such a log price list is not 
straightforward. The need for timber must be translated into log dimensions, and this requires 
good knowledge of the outcome of timber from different log dimensions. Values reflecting both 
timber values and desired quantities must be assigned to different log dimensions, and the 
characteristics of the stems to be bucked must be known. The optimal bucking pattern of a stem 
is the pattern yielding the highest summed value of the logs cut from the stem. Dynamic 
programming (DP) (Dreyfus & Law 1977) is an optimization technique widely used in bucking 
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applications for finding the optimal bucking pattern of individual stems (Pnevmaticos & Mann 
1977). However, static log prices assume open market conditions, i.e., no constraints on the 
volume produced in different log classes. So as to meet order book constraints from a set of 
stems, i.e., a stand, different approaches have been investigated. Kivinen & Uusitalo (2002) used 
DP at the lower stem bucking level and a fuzzy logic algorithm to adjust the relative log prices at 
an upper stand level in an effort to maximize the apportionment degree—a measure of how well 
the target log distribution was met. Laroze (1999) used a taboo search algorithm at the lower level 
to generate efficient bucking patterns and an LP model at the upper level to combine different 
bucking patterns subject to demand constraints. Pickens et al. (1997) used DP at the lower level 
and LP at the upper level, maximizing net value under log length demand restrictions. Kivinen & 
Uusitalo (2002) concluded that the calibration of a price list prior to bucking a stand is very 
sensitive to the precision of the prior information and that the same or even better results can be 
obtained by continuously adjusting the log prices after each cut stem when the objective is to 
meet order book demands. 

A more direct approach to the communication problem is to use a log breakdown 
simulator. Faaland & Briggs (1984), Reinders & Hendriks (1989) and Maness and Adams (1991) 
integrated a log-sawing algorithm that evaluates the value of the boards sawn from the logs into 
the bucking model. 3D scanning of logs common at the log sorting station yields a detailed 
description of the logs’ external geometries that can be used as input to sawing simulation 
software for predictions of timber yield. And if complete stems are 3D scanned, the bucking 
operation can be adaptively controlled by product demand and timber product prices, easing 
communication and possibly leading to even better value recovery and production control. Thus 
the potential of such systems should be assessed and related to today’s practice and ultimately 
related to the full potential of the wood raw material as provided by a full knowledge of the 
stem’s outer shape and interior knot structure. 
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2. OBJECTIVES

The hypothesis set at the beginning of the work was that there is an unexploited value potential 
in the forestry–wood chain which can be reached using modern measurement techniques and 
that a better characterization of the wood raw material will facilitate an improved customer-order 
orientation. Thus the overall objective of the work presented in this thesis has been to explore 
the potential of a higher value recovery and improved production control within the forestry–
wood chain, aiming at higher profits and better customer orientation. The connections between 
the different papers are shown in Fig. 1. 

The objective of Paper I was to investigate the prospects of segmenting knots in CT 
images of young Scots pine sawlogs with the aid of ANN. 
The objectives of Paper II were to present a method for building parametrical descriptions 
of young Scots pine sawlogs and to evaluate the accuracy of the extracted descriptions by 
comparing real boards with simulated ones based on the descriptions. 
The objectives of Paper III were to investigate whether stems modelled from site, stand 
and tree characteristics can be applied together with sawing simulations for prediction of 
grade recovery and to compare results with empirical data from the SPSB. 
The objective of Paper IV was to assess the accuracy of predicting board values in stem 
segments using X-ray scanning and optical 3-dimensional scanning of stems. 
The objective of Paper V was to investigate how value recovery and production control are 
affected by the measurement techniques used in bucking, log sorting and sawing.  
The objective of Paper VI was to investigate the outcome of products, productivity, value 
and economy for different bucking strategies using simulation techniques. 
The objectives of Paper VII were to develop a model able to explain the relationships 
between log dimensions and sawmill yield, with emphasis on the lengths, and to optimize 
the processing of logs for higher value recovery and better market adaptation. 
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Fig. 1. Schema of how the papers in the thesis connect to each other and how they may contribute to a future 
application.

3. LIMITATIONS 

The studies presented were based on simulations using a limited set of virtual sawlogs. No 
industrial measurements were performed. Properties of stems, logs and boards considered were 
limited to geometry and knots. In practice there are several other important properties to 
consider, such as heartwood, compression wood, spiral grain, rot, etc. Furthermore, all studies are 
based on Scots pine. Other species may have different properties and end uses and thus yield 
different results and conclusions. 
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4. MATERIALS AND METHODS 

4.1. Measuring knot parameters in CT images of young Scots pine sawlogs 
Papers I and II involve the use of an artificial neural network for identifying knots in CT images. 
An image analysis framework was built using MS Visual C++. The computer program integrates 
the use of a feed-forward backpropagation neural network with routines for processing digital 
images. The use of an ANN is a two stage process, where the first stage is to train the network 
on a known set of features. In the second stage, the trained ANN is used as a predictor. The 
concept of training the ANN in Paper I is summarised in Fig. 2. The feed-forward backpropaga-
tion neural network consists of several processing elements (nodes) organized in layers connected 
to each other. The number of layers and nodes in each layer defines the network’s topology. 
Here, the notation 50:15:1 means a topology with 50 input nodes, one hidden layer with 15 nodes 
and 1 output node. As there is no way of telling in advance which topology will perform well, 
different configurations had to be tested. Additionally, the network does not give a statistical 
estimate of the prediction rate. Hence, cross-validation was used to assess the network’s general 
prediction ability for a chosen topology. The performance of the ANN was measured as a 
prediction rate defined as the proportion of pixels correctly classified as either clear wood or 
knot.

a

b

b

c

c

d e

Fig. 2. Schematic description of the ANN method. From a log scanned with CT (a), digital images of transverse 
sections containing whorls were chosen (b). Grey-scale values of a squared window with the targeted pixel in the 
centre are fed to the ANN as input (d). During the training stage the desired output (e) is given by manually 
classified duplicates (c). Iterating through the images, the prediction error is minimised and the trained ANN can 
be used as a pixelwise classifier. 
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In Paper II, a complete algorithm for extracting parametrical descriptions from CT images of 
young Pinus sylvestris sawlogs is presented. The descriptions are in concordance with the format 
of the previously established Swedish Stem Bank. The knot structure is given by a set of 
mathematical models with distance in pixels from pith (rp) as the only independent variable. The 
knot’s diameter (Øp) is given in Radians by Eq.1, tangential position (  p) is given in degrees by 
Eq.2 and height position (Zp) is given in mm by Eq 3. Each knot has its own coefficients in the 
models, making it possible to compute the position of the knot axis in three dimensions and its 
size at different positions along its axis. The individual coefficients were obtained from regression 
of the knot’s development from the pith outwards as given in the images classified by an ANN. 
The complete algorithm was accomplished within the ANN image analysis framework that was 
developed.

4/1

PP rBA  (1) 

pp rDC ln  (2) 

prHGZ
 (3) 

A set of 89 logs originating from 48 trees was sampled from 8 young, not previously thinned 
stands in the north of Sweden. The logs were scanned in a medical CT scanner (Siemens 
SOMATOM AR. T.). Once parametrical descriptions of the logs were made, the ability to 
correctly simulate the yield of a sawing operation had to be validated. Five logs originating from 
three trees were through-and-through sawn. Two logs yielded two boards each and three logs 
yielded four boards each. On the sapwood side of the outermost pair of boards, the size and 
position of the knots were measured. The knot size was measured in both longitudinal and 
tangential direction. The longitudinal position was measured with the butt end as a reference, and 
the tangential position was measured with the left edge as a reference. Corresponding boards 
were reconstructed by simulated sawing of the parametrically described logs. 

4.2. Sawing simulations 
In this thesis, two different sawing simulation tools were used. A sawing simulation program 
named virtual SawMill (vSM) (Chiorescu & Grönlund 1999) was used in Paper VI. The vSM is a 
graphic simulator which reads logs from the SPSB and is able to calculate the boards resulting 
from sawing, edging and trimming operations with these logs as input. Machinery settings, 
grading criteria and price lists can be adapted to resemble real sawmills, and the software can be 
controlled and its functionality extended with a built in scripting ability. With the upcoming tasks 
of this thesis in mind, a decision was taken to build another sawmill simulation program—
Saw2003. Reasons behind the decision were: 1) vSM operates on the Macintosh platform which 
is rarely used in the sawmill industry or at the university (Saw2003 was designed to operate on the 
PC/Microsoft Windows platform); 2) new functionality allowing for reconstruction of stems 
from the logs and rebucking into new lengths along with production control algorithms had to be 
included in the software; 3) the ability to easily change the source code and extend the 
functionality was desirable; and 4) this allowed full control and understanding of calculations and 
simplifications underlying the simulations. A first version named Saw2k was used in Paper II 
where logs were through-and-through sawn in order to evaluate the knot models derived for 
young Scots pine sawlogs. The software then was re-engineered, keeping the best code parts 
while rewriting other parts, into the second version named Saw2003, Apps. A–D. 
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Saw2003 was used in Papers III, IV, V and VII. It is a Windows™-based program 
developed in C++ with a graphical interface partly based on OpenGL, allowing the user to view 
and interact with logs and boards in three dimensions (Fig. 3). The software is capable of reading 
logs from the SPSB database and optionally assembles logs into stems for bucking into other 
lengths. The sawmill modelled uses cant sawing, in which the first sawing machine cuts the log 
into a cant and side boards, while the second sawing machine cuts the cant into centre boards 
and side boards. Side boards are edged and trimmed, while trimming is the only operation on 
centre boards. Both edging and trimming are value-optimizing operations based on timber prices 
and grade. Grading is based on wane criteria and knot properties following the structure of the 
Nordic Timber Grading Rules (Anon. 1994). Throughout the processes complete 3D 
information of log and boards is retained. The simulator also exposes a great deal of its 
functionality to a built-in scripting module where Visual Basic scripts (vbScript) can be executed. 
A complete list of scriptable properties, functions and methods native to Saw2003 is given in 
App. D. Through scripts, simulations can be automated, and reports of the sawing process and 
properties of logs and boards can be tailored.

Fig. 3. Interface of the sawing simulation software Saw2003. 

In Paper III, Saw2003 was used to compare grade recovery of stems modelled from stand and 
tree characteristics connected to the SPSB, with grade recovery from the virtual logs in the SPSB. 
In Paper IV the software was used to derive the average board values from logs that were to be 
predicted by the PLS regression models. In Paper VI the software was used for simulating 
different scenarios in bucking, log sorting and production control while monitoring the effect on 
value yield, volume yield and order fulfilment. In Paper VII, Saw2003 was used to calculate the 
contribution on log level, for combinations of log small-end diameter, log length and sawing 
pattern, to be further used for log sorting optimizations using LP.
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4.3. Predicting grade and value recovery in logs 
The SPSB data material was used by Moberg (2005) and Moberg et al. (2005) as a basis for 
developing static models of stem taper and internal knot properties with site, stand and tree 
characteristics as independent variables. These models directly predict stem shape and knot 
properties without the recursive use of growth models, and in Paper III the models were used to 
create a second set of virtual logs, giving a model-based representation of the SPSB. In total, 604 
twin pairs of sawlogs containing compatible data from both model simulations and empirical 
measurements from the SPSB were used for validating the simulated logs.  

In Paper IV an even more direct approach is taken when average board values of stem 
sections are predicted without the use of site and stand characteristics. Such an average board 
value can be considered a prediction of grades weighted by their price. In the study, 
measurements by a 3D log scanner and a 2-axis X-ray log scanner were simulated on the stems in 
the SPSB. The outer shape profiles originating from the 3D log scanner were processed into a 
variable describing the bumpiness of the stems at 1 cm increments in longitudinal positions. 
Secondary variables were then derived, giving the distribution in bumpiness classes. The 
distribution along with standard measures such as tapers, diameters and position of log within 
stem were used to predict the average board value of stem sections that were candidate sawlogs 
in one regression model (M:3D). From the density profiles issued by the simulated X-ray log 
scanner (Grundberg & Grönlund 1997), secondary variables describing properties of the whorls 
within the stem were derived. The X-ray log scanner variables were used in a regression model 
(M:3D-X) together with bumpiness data. The regression method used was Partial Least Squares 
regression (PLS) (Geladi & Kowalski 1986; Lindgren 1994). Conventional Multiple Linear 
Regression (MLR) is based on the assumption that the predictor variables are independent and 
without errors and that the residuals of the predicted variable are randomly distributed. When 
predicting average board values, the predictors are definitely collinear, there is likely to be noise in 
the data and there are probably important factors not measured. PLS handles these problems 
well.

4.4. Controlling the production of boards 
In Paper VI, the Scots pine logs in the Swedish Pine Stem Bank (SPSB) were re-assembled into 
the original stems and then rebucked according to three different strategies, in addition to the 
original one, and new versions of the stem bank were formed. The targeted timber had the 
dimensions 50 x 100, 50 x 125 and 50 x 150 mm, with lengths of either 240 cm or 480 cm. With a 
trimming allowance of 10 cm and an extra 5 cm due to the harvester’s measurement inaccuracy, 
the targeted log lengths were fixed at either 255 cm or 495 cm, or a combination of both lengths. 
The virtual SawMill was used to assess the outcome of boards in processing the four versions of 
the stem bank. In the log breakdown simulation, only the gross values were accounted for. In 
order to include the influence on sawmill productivity of the log lengths resulting from the 
different bucking strategies, the product flow was simulated with a program named Extend™. 
Buffers and interruptions were modelled, as well as diverging and merging of flows along with 
processing times of different operations (Hermansson & Johansson 2000). The results, 
dependent on the average log length, were received as the flow of products (pieces/h). By putting 
the results from the sawmill simulations together with the results from the flow simulation, the 
contribution per hour could be calculated and used as a relevant measure of the alternatives. 

In Paper V, the sawmill simulator Saw2003 was used with the added capability of value 
optimizing the bucking pattern and with integrated production control algorithms. The 
simulations were done on the set of young Scots pine stems described in Paper II. In the 
simulations, bucking was either performed conventionally with a log price list giving individual 
prices on different combinations of log small-end diameter and log length, or else bucking was 
performed with a timber price list in combination with sawing simulations. Log sorting was based 
on either a small-end diameter look-up table or on sawing simulations. When sawing simulations 
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in bucking and log sorting were used to predict values of logs, the alternative yielding the highest 
value was chosen. In addition, combinations of production control were employed in bucking, 
log sorting and log breakdown, with the target set to produce a given volume share of four 
specific products. The production control algorithm continuously adjusts prices of the products 
in order to meet targets. When the desired share of a particular product is lower than the target 
share, and the share is decreasing, the product price is raised. If the target share is higher than 
desired, and the share is increasing, the price is lowered. Whenever the share is moving towards 
the target the price remains the same. In total, 28 simulations were carried out. The results 
monitored were value and volume recovery and how well the targeted volume share of the four 
products was met. Results were further evaluated using PLS. 

In Paper VII the stems within the SPSB and the additional set of young Scots pine stems 
were used for simulating and optimizing a real sawmill. Segments of the stems with varying 
lengths and at different positions within the stems were used to create a large number of logs 
representing all combinations of log length and small-end diameter (SED). The simulator was set 
up to model the studied sawmill with respect to machinery, product prices, processing costs and 
positioning error of the logs within the first saw. Each log was sawn with several sawing patterns 
and the results were postprocessed to account for measurement error in the log sorting station. 
The compiled results were then used in an LP model able to maximize the profit out of the 
sawmill’s log supply with constraints on the products produced and available logs. The log 
distribution was found to restrict the ability to produce the desired volumes of boards in specific 
lengths. Hence, the log length distribution should be altered. Bucking simulations were used on a 
virtual stand, compiled from forest inventorying data, to find a set of log prices that would 
produce the desired log length distribution when used to control the harvester’s bucking 
operation.
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5. RESULTS & DISCUSSION 

5.1. Measuring knot parameters in CT images of young Scots pine sawlogs 
Paper I showed that ANNs are feasible for knot identification in CT images of young Scots pine 
logs. It was concluded that the number and position of knots would be quite accurate in a 
parametric description based on images classified with an ANN (Fig. 4). It was also shown that 
the prediction rate in general increased with increased window size as well as with increased size 
of the hidden layer. The textural orientation given by the growth rings and knots provided further 
information, making it possible to increase the efficiency of the network by aligning the input 
feature window to the tangent given by the radii from the pith to the centre of the window. A 
summary of the prediction rates achieved with the topologies evaluated is given in Table 1. The 
computational time increases with the larger window and larger hidden layer. Thus, the topology 
chosen in an application must be a compromise between prediction accuracy and speed. 

Table 1. Summary of prediction rates achieved with the topologies evaluated on the training set 
Window
size

Method No. of 
hidden
layers

Nodes
in
hidden
layer

Average
prediction
rate
(%)

SD

7 x 7 Std 1 15 97.01 0.75 
7 x 7 Std 1 21 97.34 0.66 
9 x 9 Std 1 40 97.61 0.65 
5 x 5 Tang. 1 5 97.06 0.85 
5 x 5 Tang. 1 9 97.29 0.82 
5 x 5 Tang. 1 12 97.40 0.71 
5 x 5 Tang. 1 15 97.45 0.81 
5 x 5 Tang. 1 21 97.34 0.76 
7 x 7 Tang. 1 5 97.04 0.87 
7 x 7 Tang. 1 9 97.48 0.69 
7 x 7 Tang. 1 12 97.52 0.72 
7 x 7 Tang. 1 15 97.76 0.56 
7 x 7 Tang. 2 15:5 97.75 0.56 
7 x 7 Tang. 1 21 97.82 0.53 
9 x 9 Tang. 1 5 96.50 1.08 
9 x 9 Tang. 1 9 97.62 0.65 
9 x 9 Tang. 1 12 97.73 0.65 
9 x 9 Tang. 1 15 97.79 0.57 
9 x 9 Tang. 1 40 98.21 0.54 

The differences in prediction rate between different topologies seem small but as the knots only 
cover approximately 10% of the disc area even small improvements in prediction rate are 
valuable.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Examples of two discs classified by an ANN with a 7 x 7 input window, 15 nodes in hidden layer and 
one output. Original images (a) and (b), manually classified images (c) and (d), images classified by the ANN (e) 
and (f). 

Paper II presents a complete algorithm for extracting log geometry and knot structure. The 
algorithm is based on image classification with an ANN in combination with image processing 
and analysis. A comparison between real boards and simulated boards verified that the number of 
knots showed high correlation (R2 = 0.9) between real and simulated boards (Fig. 5). The 
differences in tangential and longitudinal position were 0.3  3.6 mm and 1.6  4.2 mm 
respectively, and differences in tangential and longitudinal diameter were 0.6  4.0 mm and -0.6 
3.9 mm respectively. Knot diameters were more accurately predicted on boards distant from the 
pith than on boards close to pith. The relatively large random errors on knot diameter imply that 
grading simulated boards with the explicit Nordic Timber Grading rules (Anon. 1994) will not 
produce reliable results on the single-board level when compared to real boards sawn from the 
original logs. Grundberg & Grönlund (1999) have shown that for large groups of logs, the 
random error in knot diameter has a limited influence on value recovery and volume yield. 
Hence, the virtual logs are a realistic approximation of real logs and can be used for modelling 
the knot structure of trees and for simulating the yield of different strategies in forestry and 
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sawmilling. As the simulated boards otherwise compared well with real boards, it was also 
concluded that the sawmill simulation software is reliable; visual evidence is given in Fig. 6. 
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Fig. 5. Number of knots measured on real boards as a function of predicted number of knots based on simulated 
sawing of the same logs. 

Fig. 6. Board reconstructed from simulated sawing based on parametrical description of a log (a) and 
corresponding section of the CT image stack (b). N.B. Horizontal and vertical scaling are not equal. 

The results from Papers I and II show that the segmentation of knots in CT images is not 
perfect. There are several other alternatives in setting up the input feature vector that have not 
been investigated; thus, the prediction rate may be further improved. In the training stage of the 
ANN, the keys were given by manually classified CT images, and this is probably a source of 
variation. Though it is easy to see a knot in the image, it is not easy to determine the border to 
the surrounding wood.  The fact that the knots were fitted in a mathematical model must also be 
considered. Biological material with great natural variation, as is the case with knots, does not 
always fit models perfectly. 

5.2. Predicting grade and value recovery in logs 
The comparison in Paper III between model stems and the stems in the SPSB showed that it was 
possible to predict the timber grade recovery on the basis of stand and tree measurements (Fig. 
7). When comparing results of tree models against empirical data for 604 logs, the volume 
recovery of side boards was overestimated with the modelling approach, but the volume recovery 
of centre boards and the grade recovery showed good agreement (Table 2). The overestimation 
of sideboards is likely attributable to overly round and straight model stems, whereas real stems 
are crooked in many directions and the cross-sections are irregular in shape. For both methods, 

b
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the recovery of the strictest grade decreased slightly with increasing tree size class, but increased 
with increasing timber dimension. The results of this study illustrate how the Saw2003 system can 
be applied to estimate the timber volume and grade recovery of standing Scots pine trees. This 
could be useful in planning applications to support decisions early in the solid wood supply chain 
regarding industrial potential of a standing timber resource for assessing stumpage rate, allocation 
of sawlogs to different specialized mills or evaluation of future conversion strategies for a specific 
mill.
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Fig. 7. Timber grade distribution by tree size class using tree model and empirical measurement data respectively. 

Table 2. Total sawlog volume, timber volume, volume recovery rate, total timber value and relative product value 
using tree models and empirical measurements respectively. 

 Log 
volume

Centre
board
volume

Side board 
volume

Volume
yield

Board
value

Value
recovery

 (m3) (m3) (m3) (%) ($) ($·m-3)
Model simulation 104.0 40.2 18.0 56.0 12,500 214.57 
Empirical data 106.5 39.8 14.8 51.3 11,600 212.57 

Results of Paper IV showed that average board values could be well predicted from 
measurements on stems. With variables derived from a 3D measuring device (model M:3D), R2

was 0.68. Adding X-ray log scanner measurements to the regression model improved R2 to 0.72. 
In summary, with model M:3D, high values were achieved with large diameter, smooth (no 
bumps) butt logs with large butt end taper from tall trees. With model M:3D-X, low to moderate 
values on X-ray-measured knot properties in the log and in the lower part of the stem also 
indicate high value. Fig. 8 shows predictions of average board values with model M:3D-X on an 
independent test set. 
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Fig. 8. Predicted and observed average board value (AVG) for the independent test set of 100 logs using model 
M:3D-X.

In the study there was a rather small improvement in prediction accuracy achieved by adding X-
ray log scanner data. Oja et al. (2004) reported an improvement in classification accuracy when 
classifying logs by centre board grade from 57% when using only 3D scanning to 66% when 
using both 3D and X-ray scanning of logs without knowledge about stem properties. 
Conclusions drawn from these results are: 1) the return on investing in and adding an X-ray log 
scanner to an already existing 3D scanner is questionable in bucking applications; and 2) the log’s 
position in the stem and properties in relation to the stem explain some of the variation in knot 
properties that also are revealed with X-ray log scanning. An example of the application of model 
M:3D on three stems is provided in Fig. 9, and the example is extended to prediction of log 
values in Fig. 10. In both examples a 4-m-long log was assumed, but values can be predicted on 
logs with any lengths between 3.0 and 5.6 m. Such log values derived from sawing simulations 
and board value predictions can be used as the objective function to maximize in bucking 
optimizations.
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Fig. 9. Average board value (AVG) predicted with model M:3D on a 4-m log at different positions within stem. 
Example with three stems. 
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Fig. 10. Gross value of a 4-m log at different positions within stem estimated by combining predictions of board 
values with model M:3D and volume yield predicted with the saw mill simulator software Saw2003 and adding 
the value of byproducts, example with three stems. 
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5.3. Controlling the production of boards 
Results of the study of bucking methods, log sorting methods and production control in Paper V 
show that a high value recovery is accompanied by high volume yield. The results also show that 
the more detailed information the bucking and log sorting decisions are based on, the higher the 
value recovery. Furthermore, the more processing stations involved in production control, the 
better the demand targets are met. The results are summarised in the PLS scatter plot of Fig. 11.  
In the study, the apportionment degree was negatively correlated with value recovery. This could 
be interpreted as indicating that the pricing of the boards did not reflect their true value in terms 
of saleability.

Figure 11. PLS scatter plot. Y-variables are the modelled responses. AppDeg = apportionment degree; Value = 
gross value of the products; Yield = volume yield. X-variables are binary, indicating the presence of a treatment in 
the simulations. ProdCtrl = production control; BuCtrl = production control in bucking; LsCtrl = production 
control in log sorting; BdCtrl = production control in log breakdown; Bu2D8 = bucking based on diameters with 
errors and a log price list; Bu2D = bucking based on diameters and a log price list; Bu3D = bucking based on 
the stems’ full 3D profiles; BuCT = bucking based on the stems’ full 3-D profiles and interior knot structure; 
LsDiam = log sorting based on the logs’ small-end diameters; Ls3D = log sorting based on the logs’ full 3D 
profiles; LsCT = log sorting based on the logs’ full 3D profiles and interior knot structure. Variables close to each 
other are positively correlated. Projecting the x-variables to the line drawn from a y-variable through origin gives the 
prediction coefficients of the scaled and centred x-variables (e.g., Bu3D) for that y (e.g., Value, AppDeg), i.e., the 
relative importance of the predictors. In the example, Bu3D is positively correlated to value but negatively correlated 
to the apportionment degree. 

The absolute values assessed for different treatments depend on the constitution of the raw 
material as well as prices used. Thus, the relative values are better measures when comparing the 
results.  The possible gain in value recovery when introducing 3D-based bucking and log sorting 
amounts to 6.4% compared to today’s practice with 2D-based bucking and diameter-based log 
sorting. If a precise description of internal knot properties is added to information underlying the 
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bucking and log sorting decisions, the value can be increased by 8.8% from today’s situation. CT 
scanning may be a future possibility to provide such information. The objective function used 
here was the gross value of the produce. In order to maximize profit, the cost side of the process 
must be included in the prices given the boards. Ultimately, all activities in the process should be 
assigned cost or revenue functions to allow the prices to be updated dynamically as orders, 
stockpile and production change. From today’s situation, the first step would be to base log 
sorting on simulated sawing of logs described by their shape as measured with a 3D measuring 
device, and with product prices as input. A prerequisite for the implementation of such a strategy 
is the existence of a 3D measuring device at the sawmill where the software is to be installed. The 
next step would be to extend the process to bucking based on 3D shape. Technically speaking, all 
the required components are available, but in practical terms, it would take some effort to 
convert from the cut-to-length system to a tree-length system.  

In Paper VI, the results showed that the volume of desired product dimensions could be 
substantially increased by alternative bucking strategies. The results of the simulated sawing gave 
the highest value from the alternative with 255 cm long logs. This alternative would have been 
chosen if the objective was to maximize the value out of a given wood supply. More high quality 
boards, along with a high yield of products with a bonus on the price, outbalanced the low use of 
raw material originating from a large portion of residual top logs shorter than minimum length. A 
likely cause of the high quality is that the probability of a board containing sections with low 
quality increases with increased length. Since the grade of a board is determined by its worst 
section, longer boards will get a lower grade. The same alternative (255) had the highest 
productivity on a piece per hour basis. This is a bad criterion for selection of strategy. A better 
measure of productivity is volume per hour. 

Based on volume per hour, one would have chosen the 495 + 255 alternative. However, 
only when the value is combined with the production rate, forming a measure of contribution per 
hour, does one have the appropriate criteria for evaluating different strategies and picking the 
most profitable one. In this study, the best alternative was the reference alternative (Fig. 12). It 
was concluded that a holistic approach, as taken here, would be necessary for good decision-
making within the supply chain. By using simulation techniques, it is possible to foresee the 
outcome of different operations along the production line and thus avoid expensive surprises. 
Optimizing forest operations, value recovery and production as separate entities will not produce 
optimal results.
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Fig. 12. Contribution per hour calculated by combining product flow with product value in four bucking 
alternatives.
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In Paper VII, a real sawmill was simulated. In the model, realistic log geometries were used and 
imperfections in log positioning at the first saw and measurement errors in log sorting were 
accounted for. The model that assesses product yield in different log classes gave reasonable 
explanation of why the lengths of the boards do not match the lengths of the logs and why this is 
more pronounced with smaller dimensions of timber. In Fig. 13 it is shown that for a small 
dimension such as 38 x 100 mm, the sorting limits depicted by maximum volume yield will 
produce a large proportion of boards with lengths shorter than the target length 4200 mm when 
sawing 4300 mm long logs. Increasing the share of target lengths of small dimensions can only be 
done at a relatively high cost in terms of volume yield loss. For larger dimension timber, a 
significantly larger proportion of target lengths can be produced without yield losses. The model 
reveals one more interesting finding. Small-end diameter sorting limits should vary with log 
length. Short logs should have larger diameters than long logs. At the studied sawmill, as well as 
at many others, log sorting is based on small-end diameter alone.  
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Fig. 13. Predicted volume yield length distribution of 38- x 100-mm boards yielded from 4300-mm-long logs 
with varying small-end diameter. Yield is expressed as proportion of log volume. In each presented 2-mm-wide log 
class, the leftmost bar represents boards 1800 mm long, and succeeding bars show boards with a 300-mm length 
increment up to the rightmost bar representing 4200-mm-long boards. Lines show total volume yield for three 
competing dimensions. 

Optimizing the log sorting of the sawmill’s current log distribution indicates a possible increase 
of 2.4% in contribution. In order to meet the desired length distribution of the timber, it is 
necessary to alter the log length distribution. Simulations of bucking the virtual stand showed that 
a desired log length distribution could be produced by changing the log prices controlling the 
bucking. However, results also indicate that there is no set of fixed log prices that yield the 
desired log length distribution. To meet targets, log prices must be dynamically changed by an 
adaptive control algorithm during production. Applying value-optimized log sorting on the 
altered log distribution gave an increase in contribution of 6.1%. Furthermore, the desired length 
distribution of the timber could be fulfilled. 
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6. CONCLUSIONS

The most important conclusions drawn from the papers presented are: 
Virtual stems in combination with simulations of bucking, log sorting and sawing are 
powerful tools for research within the forestry–wood chain. 
Artificial neural networks are suitable for knot identification in CT images with low 
contrast, but do not yield perfect results. 
Grade and volume recovery can be predicted from models of stem shape and internal 
knot structure based on site, stand and tree characteristics in combination with sawing 
simulation. However, the prediction of side boards needs to be improved. 
3D measurements of stems and logs can provide data for accurate predictions of board 
grade expressed as average board values. 
There is an unexploited value potential in the forestry–wood chain. The full potential can 
only be reached with a precise description of stem shape and internal knot structure prior 
to the bucking operation and with a processing into logs and boards that is free from 
errors.
A large portion of the value potential can be reached if stem shape and log shape as 
measured with a 3D scanner are used together with sawing simulations for decisions in 
bucking and log sorting. 
It is almost equally important to employ production control in bucking, log sorting and 
sawing in order to meet target shares of products produced.
Targeting specific lengths of small dimension timber is difficult, and they can only be 
produced at the cost of volume yield losses. 
Log classes should be defined with varying diameter limits for different log lengths at the 
conventional diameter-based log sorting. 

The overall conclusion from this work is that the 3D scanner used online on stems and logs 
provides data for grade predictions and stem shape that when used together with sawmill 
simulations will allow for higher value recovery and improved production control. 

7. FUTURE WORK 

Results and conclusions drawn from the papers within this thesis are all based on simulations. 
Hence, the most promising alternatives presented should be validated in practice. This could be 
done by gradually introducing the concepts while carefully monitoring the outcome. 3D scanning 
of stems for the purpose of bucking decisions seems to be a promising method for improved 
value recovery and production control. However, the harsh environment at the processing heads 
of harvesters makes it less likely that such measuring capabilities will be realized in the near 
future. On the other hand, 3D scanning of stems at sawmills implies that the current short-wood 
system practiced in Sweden might better be abandoned. These questions need to be analyzed and 
tackled.

This thesis has focused on dimensions and knot properties of the timber. Undoubtedly 
there are other properties of the wood that should be accounted for in operational decision 
making—properties such as heartwood, spiral grain, compression wood, strength, etc. In order to 
include these properties in bucking decisions and log sorting decisions, further research is 
required.
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The value of solid wood products is to a large extent determined by the sizes, types and
distribution of the knots in the products. Hence there is a great interest in describing the
internal knot structure of individual logs. The Swedish Stem Bank has been extensively used
for modelling the interior knot structure of Scots pine (Pinus syl×estris L.) and for simulating
the outcome of sawing operations. The stem bank holds parametric descriptions, extracted
from computer tomography (CT) imagery, of mature trees. To enlarge the stem bank with
trees from younger stands, a better method for extracting the knot properties from the CT
images is needed. In this study, arti�cial neural networks were used for segmenting and
classifying knots in transverse CT images of a 30-year-old Scots pine. The cross-validated
prediction rate of correctly classi�ed pixels was 95.9%91.2%. Classi�ed knots were distinctly
separated. Misclassi�cations were mainly located in the border areas between knots and clear
wood. Key words: ANN, computed tomography, image analysis, knots, Scots pine.
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INTRODUCTION

Knot properties are of great importance to many solid
wood products. The quality of the product, as well as
its value, is to a large extent determined by the sizes,
types and distribution of its knots. Economical gains

may be achieved by picking the right raw material and
by processing it more intelligently based on knowledge
of the interior knot structure of trees and logs (Steele
et al. 1993, Grönlund 1995, Todoroki 2001). Thus,
there is a great interest in describing the knot structure.

Traditional means of measuring knot properties
(Koehler 1936, Liljeblad et al. 1988) involve a lot of
work and are destructive. The medical computer to-
mography (CT) scanner is suitable for automated
nondestructive measurement of knot properties

(Grundberg 1999) and has been used in establishing the
Swedish Stem Bank (Grönlund et al. 1995), a database
of 200 Scots pine stems. Besides a detailed description
of the stems’ origin, stand characteristics and timber
grading, the interior knot structure is available in a
parametrical form. The data base has been used in

forest research for developing knot structure models
(Björklund 1997, Moberg 1999) and in the wood
technology sector for simulation of sawmill operations
(Björklund & Julin 1998) and simulation of a log
scanner (Grundberg & Grönlund 1997). The stems

originate from mature stands with an age ranging from
70 to 153 years. Scanning the stems in a CT scanner
revealed the knot structure in the Swedish stem bank.
A semiautomatic algorithm was used on the CT images
to obtain the parametric description of the knot
structure. As a basis for the algorithm, the high
contrast between the dense knots and the lighter
heartwood was used (Grundberg 1994).

Thinning in younger stands accounts for a large
portion of the increase in the estimated potential
harvest in Sweden. Combined with a change of demand
towards smaller dimensions of wood products, the
importance of young trees as a raw material
is increasing. For this reason, there is an interest
in augmenting the stem bank with young Scots
pine logs. Initial attempts to apply the same method
to images from young trees with little or no heartwood
gave erroneous results. Several other algorithms for
feature extraction from CT images of hardwood logs
have been developed by other researchers (Funt &
Bryant 1987, Bhandarkar et al. 1999) using traditional
image analysis techniques such as analysis of shape and
texture in combination with thresholding and �ltering.
Work by Li et al. (1996) and Schmoldt et al. (2000) has
demonstrated the feasibility of using arti�cial neural
nets (ANN) for the segmentation and labelling of
features in several hardwood species.

© 2002 Taylor & Francis. ISSN 0282-7581
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ANNs are used in the engineering disciplines of
pattern recognition, modelling and prediction (Huang
1997, Schmoldt et al. 2000). The network represents a
complex set of interdependencies which may incorpo-
rate any degree of nonlinearity, allowing very general
functions to be modelled (Michie et al. 1994). ANNs
are capable of combining segmentation and classi�ca-
tion in a single step (Schmoldt et al. 2000) when
classifying images, while traditional methods usually
involve a sequence of operations.

The objective of this study was to investigate the
feasibility of ANNs for segmenting knots in CT
images of Scots pine logs from young stands.

MATERIALS AND METHODS

Samples

The study was carried out on images from a butt log
of a 30-year-old Scots pine (Pinus syl×estris L.)
scanned with computer tomography (CT) (Fig. 1).
The log was 492 cm long and the diameter was 14 cm
at the top. Digital images sized 256½256 pixels and
with an 8-bit grey scale showing the density varia-
tions in transverse sections of the logs were produced,
one image per 1 cm in the longitudinal direction. The
scale of the images was 350 mm per 256 pixels, or
approximately 1.37 mm pixel. 13 images containing
whorls with varying types of knots and at different
heights in the log were arbitrarily chosen. The knots
were manually marked out on duplicates of the cho-
sen images with the aid of software developed for the
purpose. The background and bark were also marked
out by a threshold operation de�ning the wood as the
region of interest. The classi�ed duplicates served as
keys when training the arti�cial neural network.

Arti�cial neural network

In this study an arti�cial neural network (ANN) was
used for pixelwise classi�cation of the CT images.
Each pixel was classi�ed as either belonging to a knot
or belonging to clear wood. The use of ANNs is a
two stage process where the �rst stage is to train the
network on a known set of features. In the second
stage the trained ANN is used as a predictor. Here,
the ANN was given input from the original images
and trained to predict the desired output given by the
manually classi�ed duplicates. The ANN used was a
feed-forward back-propagation neural network (Has-
soun 1995) consisting of one input layer, one or two
hidden layers and one output layer (Fig. 2). Each

layer has one or more nodes that act as processing
elements. The number of layers and nodes in each

Fig. 1. Schematic description of method. From a log
scanned with computed tomography (a), digital images of
transverse sections containing whorls are chosen (b). Grey-
scale values of a squared window with the targeted pixel in
the centre are fed to the arti�cial neural network (ANN) as
input (d). During the training stage the desired output (e) is
given by manually classi�ed duplicates (c). Iterating
through the images, the prediction error is minimized and
the trained ANN can be used as a pixel-wise classi�er.

Fig. 2. General layout of a three-layer arti�cial neural
network (ANN). The feature vector is standardized and fed
directly to the input layer. Each node in the hidden layer
receives a weighted input from the input layer. The output
of a node is then calculated by a transfer function applied
to the sum of inputs of that node. This is repeated in the
output layer, giving the �nal output.
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layer de�nes the network’s topology. The layers are
fully connected, meaning that every node in the input
layer will send its computed output to every node in
the �rst hidden layer, which in turn will send its
output to every node in the next layer, and so on
until the output layer is reached. Each connection
between nodes in different layers has a weight term.
The input of a node is the sum of its weighted inputs
plus a bias term. The output of the node is then
computed by a transfer function; here a logistic trans-
fer function was used.

When training the network, a feature vector is
presented to the input layer and fed forward through
the network. The difference between the computed
output and the desired output forms the error term.
The differential of the error to every weight is calcu-
lated and used for updating the weights. The weights
are updated by adding a fraction of the calculated
error gradient; the fraction is often referred to as the
learning rate. It usually takes several iterations to
minimize the error using the gradient-descent search
algorithm described above. When multidimensional
systems are modelled, there is a risk that the network
will get stuck in a local optimum. The risk can be
reduced by adding momentum to make the weight
changes equal to the sum of the fraction of the last
weight change and the new weight change that is
computed. If the network is trained on carefully
selected feature vectors, it can be used to predict the
output of other feature vectors.

The feature vector used was the greyscale values of
the individual pixels in a squared window on the
neighbourhood of the pixel under consideration. The
sizes of the windows evaluated were 5½5 pixels,
7½7 pixels and 9½9 pixels, with the targeted pixel
in the centre. Additionally, the Euclidean distance of
the pixel to the pith (rp) was fed to the input layer.
Hence the input layer had from 26 nodes up to 82
nodes. The input was standardised to range from
¼1.0 to 1.0. Two different methods of setting the
values of the window were compared. The standard
method is simply to scan over the image pixel by
pixel, reading out the neighbouring pixels. The other
method was to align the window to the tangent given
by the radii from the pith to the centre of the window
(Fig. 3). With the tangential alignment method, the
neighbouring pixel values were calculated through
interpolation from the original image pixels. The
output layer had only one node, whose output was
set to 1.0 if the pixel belonged to a knot and was
otherwise set to 0.0 in the training stage, and the nets

were initialised with random weight coef�cients and
bias terms. The learning rate was �xed at 0.15 and
the momentum set to 0.5. Each topology evaluated
was trained in 500 iterations. The software used was
developed in C�� speci�cally for this study.

The performance of the networks was measured as
a prediction rate de�ned as the number of correctly
classi�ed pixels divided by the total number of
classi�ed pixels. The search for a good working
model was narrowed based on early results from the
study. Thus, some combinations of window size, win-
dow alignment and size of the hidden layer were not
evaluated. The evaluated topologies are shown in
Table 1. The two methods of aligning the window
were compared at three different topologies. A com-
parison between two hidden layers and one hidden
layer was made. The evaluated topology in the two-
layer case was 50:15:5:1, indicating 50 input nodes,
two hidden layers with 15 and 5 nodes, respectively,
and 1 output node, and the topology with one hidden
layer was 50:15:1. The comparison indicated that one
hidden layer was suf�cient and subsequently one
hidden layer was used in all the other cases. The
number of nodes in the hidden layer in the other
cases was 5, 9, 12, 15, 21 or 40. The prediction rate of
the topology 50:15:1 was evaluated using cross-vali-
dation. One disc at a time was selected as a prediction
set while training was done using the remaining 12
discs. This was repeated until all discs had been used
to estimate the prediction rate.

RESULTS

The prediction rate due to different combinations of
window size, window alignment, number of hidden
layers and nodes in the hidden layers is summarised
in Table 1. The prediction rate of the training set was

Fig. 3. Illustration of the two methods of aligning the
window around the targeted pixel. (a) Horizontally aligned
window, and (b) tangential alignment to the radii (rp ) from
the pith to the centre of the window.
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Table 1. Summary of prediction rates achie×ed with the topologies e×aluated on the training set

Nodes in hidden Average prediction
SDrate (%)layerWindow size Method

15 97.01Std 0.757½7
21 97.34 0.667½7 Std
40 97.61Std 0.659½9
5 97.06 0.855½5 Tang.
9 97.29Tang. 0.825½5

12 97.40 0.715½5 Tang.
15 97.45Tang. 0.815½5
21 97.34 0.765½5 Tang.
5 97.04Tang. 0.877½7
9 97.48 0.697½7 Tang.

12 97.52Tang. 0.727½7
15 97.767½7 0.56Tang.

15:5 97.75Tang. 0.567½7
21 97.82 0.537½7 Tang.
5 96.50Tang. 1.089½9

Tang.9½9 9 97.62 0.65
12 97.73Tang. 0.659½9

Tang.9½9 15 97.79 0.57
40 98.21 0.549½9 Tang.

Std: standard method; Tang. tangential alignment method.

higher with the tangential alignment method than
with the standard window method for the three dif-
ferent net topologies compared. Adding of a second
hidden layer with 5 nodes, creating a net topology of
50:15:5:1, did not improve the prediction rate com-
pared to the previously evaluated topology of
50:15:1. In general, the prediction rate increased with
larger window size as well as with a larger hidden
layer. The exceptions were the two combinations of a
large window (9½9) with a small hidden layer (5)
and a small window (5½5) with a large hidden layer
(21), where better prediction rates were achieved with
smaller window at the same size as the hidden layer
and with a smaller hidden layer at the same size as
the window, respectively.

Cross-validating the topology 50:15:1 gave an aver-
age prediction rate of 95.9% with a standard devia-
tion of 1.16%. The prediction rate increased with the
number of iterations (Fig. 4). After 200 iterations the
prediction rate of the test set was already 95.8%.

Two examples of CT images classi�ed by a net
with the topology 50:15:1 trained on all 13 discs are
shown in Fig. 5. It is visually apparent that all knots
were found by the ANN and that the misclassi�ca-
tions are mainly located in the knot border areas. The
prediction results of the two discs are shown in Table
2. For both discs more clear wood was misclassi�ed
as being knots than vice versa.

DISCUSSION

The classi�cation accuracy achieved in this study was
on a par with the results reported by Schmoldt et al.
(2000) for various hardwood species. A probable
source of error is the subjective marking of knots in
the CT images. Although segmentation is intrinsic to
human vision, the borders between knots and clear
wood were not easy to outline in the CT images. A
more accurate method would be to cut discs from a
previously CT-scanned log, outline the knots on the
discs and scan them with a camera and use them as a
key during the training stage.

Fig. 4. Evolution of the prediction rate: averages from
cross-validation of the topology 50:15:1.
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Fig. 5. Images of disc 6 (a, c, e) and
disc 12 (b, d, f) classi�ed by an arti�-
cial neural network (ANN) with the
topology 50:15:1. (a, b) Original im-
ages; (c, d) manually classi�ed im-
ages; (e, f) images classi�ed by the
ANN.

When training an ANN there is a risk that noise

will be modelled. If this is the case, the prediction rate

of the test set will have an optimum after a certain

number of iterations. By observing how the predic-

tion rate evolves, as in Fig. 4, and stopping the

training if it starts to decline, the risk of over�tting

the model can be reduced. The method of aligning

the window in the tangential direction gave better

predictions than simply keeping it horizontally

aligned. This may be due to greater ef�ciency of the

neural network when using the textural orientation.

Growth rings will be orientated in the same direction

in the window and all knots will be orientated in the

same direction perpendicular to the growth rings. It is

possible that preprocessing the images would improve

prediction ability. However, the structure of an ANN

with parallel processing of the input-feature vector

allows the network to incorporate image �lters into

the model. The network has no knowledge of how

previous pixels have been classi�ed. On the contrary,

this makes it likely that a postprocessing routine of

�lling out holes and removing small spurious knot

areas would improve classi�cation. Given the results

presented here, it can be concluded that the number

and position of knots will be quite accurate in a

parametric description based on images classi�ed

with an ANN. Only after postprocessing the images

and after the parametric description is made will it be

possible to conclude how well the size of the knots
are estimated. As the classi�er is biased towards
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Table 2. Prediction (pred.) results of the 13 discs classi�ed with the 50:15:1 neural network

Disc area Correct pred. Correct pred. of False pred. False pred. of Prediction rate
of knot (%)of knot (%) clear wood (%)Disc no. (%)clear wood (%)(pixels)

1 13 882 10.8 83.9 4.4 0.9 94.7
5.5 87.5 6.214 158 0.82 93.0

12 4183 6.1 90.4 2.4 1.1 96.5
4 11 689 6.5 91.2 1.4 0.9 97.7

1.3 96.8 1.312 385 0.6 98.15
11 7246 9.3 86.9 2.8 1.0 96.2

5.7 91.2 1.7 1.47 96.910 650
6.8 90.2 2.310 084 0.78 97.1

10 0939 7.9 88.5 2.0 1.5 96.5
10 49410 5.9 90.4 1.0 2.8 96.2

5.0 92.1 0.89 400 2.111 97.1
7.9 88.8 2.6 0.8 96.612 8 563
4.2 93.2 0.9 1.78 364 97.413

All 143 904 6.4 89.9 2.5 1.2 96.3

overestimation of the knot area in the images, it is
possible that some improvements can be made within

these steps.

It is easy to adapt the network to simultaneously
classify other features such as bark, heartwood etc. It

is simply a matter of adding nodes in the output

layer, one node per added class. Since the scope of
this study was limited to developing a method for

identifying knots, multiple-feature classi�ers have not
been evaluated against the single-feature classi�er

used here. Others (Schmoldt et al. 2000, Nyström &

Kline 2000) have reported improved accuracy when
dividing wood features into more speci�c classes.

Thus, it should be investigated whether this approach

can improve the classi�cation of knots further. A
single log was used in this study for both training and

testing the networks. In order to estimate the general
prediction rate, images from different logs should be

used for training as well as testing.

A drawback with the ANN is that there is no way
of telling in advance which con�guration will perform

well. Different topologies and learning rates must be
evaluated. This is tedious work since training a net-

work on images can take several hours. Another

drawback is that it is dif�cult to tell the importance
of single variables in the input vector.

This study has shown that ANNs are feasible for

feature extraction from CT images of young Scots
pine sawlogs. Further improvements may also be

possible, as discussed above. Hopefully, the method
can be incorporated into a more complete algorithm

in order to make a parametric description of the knot
structure of CT-scanned logs for augmenting the
Swedish Stem Bank with young Scots pine logs for
further use in forest research. By using parametric
descriptions of log and knot geometry and knot type,
the quality and value of solid-wood products can be
assessed by simulated sawing of the logs and used to
analyse the yield of different strategies in forestry and
sawmills.

ACKNOWLEDGEMENTS

This study was conducted within the SkeWood pro-
gramme, and funds were provided by the Swedish
Agency for Innovation Systems (VINNOVA) and
AssiDomän AB.

REFERENCES

Bhandarkar, S. M., Faust, T. D. & Tang, M. 1999. CATA-
LOG: a system for detection and rendering of internal
log defects using computer tomography. Mach. Vision
Appl. 11: 171–190. ISSN 0932-8092.

Björklund, L. 1997. The interior knot structure of Pinus
syl×estris stems. Scand. J. For. Res. 12: 403–412.

Björklund, L. & Julin, B. 1998. Value optimised cross-cut-
ting and sawing of CT-scanned Scots pine stems. Report
48, SIMS, Swed. Univ. of Agri. Sci., Uppsala, 37 pp.
ISSN 0284-379X. (In Swedish with English summary.)

Funt, B. V. & Bryant, E. C. 1987. Detection of internal log
defects by automatic interpretation of computer tomog-
raphy images. Forest Prod. J. 37: 56–62.
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Campus, SKERIA 3, SE-931 87 Skellefteå, Sweden). Models of knots and log geometry of
young Pinus syl�estris sawlogs extracted from computed tomographic images. Received Mar. 7,
2002. Accepted Oct. 14, 2002. Scand. J. For. Res. 18: 168–175, 2003.

The value of solid wood products is largely determined by the sizes, types and distribution of
the knots in the products. Hence, there is a great interest in describing the internal knot
structure of individual logs. The Swedish Stem Bank has been extensively used for modelling
the interior knot structure of Scots pine (Pinus syl�estris L.) and for simulating the outcome
of sawing operations. The stem bank holds parametric descriptions, extracted from computed
tomographic (CT) imagery, of mature trees. A method for extracting parametric descriptions,
in compliance with the stem bank, from young Scots pine sawlogs is presented in this study.
A key step in the algorithm is the use of an artificial neural network to find knots in the CT
images. The accuracy of the extracted descriptions was evaluated by comparing the size and
position of knots measured on 10 real boards with corresponding boards simulated based on
the description. The study showed that the number of knots on the real boards was well
predicted (R2=0.90). The differences in tangential and longitudinal position were 0.3�3.6
mm and 1.6�4.2 mm, respectively. The differences in tangential and longitudinal diameter
were 0.6�4.0 mm and −0.6�3.9 mm, respectively. Knot diameters were more accurately
predicted on boards distant from the pith than on boards close to pith. Key words: ANN,
computed tomography, knots, log geometry, models, sawing, simulation.

Correspondence to: U. Nordmark, e-mail: urban.nordmark@sveaskog.se

INTRODUCTION

Knot properties are of great importance for many
solid wood products. The quality and value of the
product are largely determined by the sizes, types and
distribution of its knots. Economic gains may be
achieved by picking the right raw material and by
processing it intelligently, based on knowledge of the
interior knot structure of trees and logs (Steele et al.
1993, Grönlund 1995, Todoroki 2001). Thus, there is
great interest in describing knot structure.

Traditional means of measuring knot properties
(Koehler 1936, Liljeblad et al. 1988) involve a lot of
work and are destructive. The medical computed
tomographic (CT) scanner is suitable for automated,
non-destructive measurement of knot properties
(Grundberg 1999) and has been used in establishing
the Swedish Stem Bank (Grönlund et al. 1995), a
database of 200 Scots pine stems. Besides a detailed
description of the stems’ origins, stand characteristics
and timber grading, the interior knot structure is
available in parametric form. The database has been
used in forest research for developing knot structure
models (Björklund 1997, Moberg 1999) and in the

wood technology sector for simulation of sawmill
operations (Björklund & Julin 1998) and simulation
of a log scanner (Grundberg & Grönlund 1997). The
stems originate from mature stands with an age rang-
ing from 70 to 153 yrs. Scanning the stems in a CT
scanner revealed the knot structure in the Swedish
Stem Bank. A semiautomatic algorithm was used on
the CT images to obtain the parametric descriptions
of knot structure. The high contrast between the
dense knots and the lighter heartwood was used as a
basis for the algorithm (Grundberg 1994).

Thinning in younger stands accounts for a large
portion of the increase in the estimated potential
harvest in Sweden. Combined with a change in de-
mand towards smaller dimensions of wood products,
the importance of young trees as a raw material is
increasing. For this reason, there is an interest in
augmenting the stem bank with young Scots pine
logs. Initial attempts to apply the same method to
images from young trees with little or no heartwood
gave erroneous results. Nordmark (2002) has demon-
strated the feasibility of using artificial neural net-
works (ANN) for the segmentation and labelling of

© 2003 Taylor & Francis. ISSN 0282-7581 DOI: 10.1080/02827580310003740
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knots in young Scots pine sawlogs. A new algorithm
involving the use of ANN has been developed and
used to extract parametric descriptions from a set of
89 logs originating from 48 trees.

The objective of this study was to evaluate the
accuracy of parametric descriptions of young Scots
pine sawlogs obtained with the new algorithm.

MATERIALS AND METHODS

Forty-eight trees were sampled from eight young, not
previously thinned stands near Malå in the north of
Sweden. In each stand a circular plot with a 7.0 m
radius was subjectively located. On each plot the
diameter at breast height was measured on all trees.
Pine trees with a diameter greater than 125 mm were
sorted according to diameter and stratified into three
groups with the same number of trees in each group.
Two trees were randomly sampled from each group,
resulting in six trees per stand in eight different
stands. The sampling strategy was chosen to allow
for evaluation of different thinning strategies.

After field measurements, the stems were felled and
cross-cut into one to three logs, depending on tree
height, with lengths of 310–550 cm, yielding a total
of 89 saw logs. The top of each stem was left in the
forest, from the point where the diameter was less
than approximately 10 cm, while the saw logs were
transported to the laboratory and scanned in a medi-
cal CT scanner (Siemens SOMATOM AR. T). Digi-
tal images were produced, sized 256×256 pixels and
with an 8-bit greyscale showing the density variations
of transverse sections of the logs, one image cm−1 in
the longitudinal direction. The scale of the images
was 350 mm per 256 pixels, or approximately 1.37
mm pixel−1.

Five trees from different stands were randomly
chosen to develop algorithms for the extraction of log
geometry and knot parameters from the CT images.
A key step in the algorithm is the segmenting of
knots in the images. In this study a feed-forward
back-propagation ANN (Hassoun 1995) was used for
pixelwise classification of the CT images. Each pixel
was classified as being either in the border of a knot
or not. To train the network, five images from each
of the five trees were used. Images with whorls were
taken from the longitudinal positions at 10%, 30%,
50%, 70% and 90% of the scanned tree length. Corre-
sponding cross-sections were located in the logs,
and cut and sanded to be used as a key to the CT
images.

An ANN was trained to identify the border of the
knots on the 25 images. The feature vector used was
the greyscale values of the individual pixels in a 9×9
window, with the targeted pixel in the centre. The
window was aligned to the tangent given by the
radius from the pith to the centre of the window (Fig.
1). In addition, the Euclidean distance of the pixel to
the pith was fed to the input layer. Hence, the input
layer had 82 nodes. One hidden layer with 17 nodes
was used, and the output layer had one node.

The geometry of the surface and the heartwood of
a log were extracted following the sequence given
below.

1. The position of the pith was manually pointed out
on the first and last image in the image stack and
on every image that was judged to contain knots
(Fig. 2a). The position of the pith for images in
between was calculated through linear
interpolation.

2. Every image was filtered with a 7×7 median filter
to reduce high-frequency noise (Fig. 2b).

3. The images were thresholded at a greyscale of
145, corresponding to a density of 733 kg m−3

(Fig. 2c), and the boundary was outlined (Fig.
2d).

4. Polar coordinates of the log surface, with the pith
as an origin, were extracted from the image stack,
one radius at every degree and at every 10 mm
along the log. The results were mapped to a

Fig. 1. Illustration of positioning of the window with the
targeted pixel in the centre. As the targeted pixel scans over
the computed tomographic image, interpolated greyscale
values of the 9×9 pixels in the window and the distance to
pith (rp) are fed to the artificial neural network, which
classifies the targeted pixel.
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Fig. 2. Images of a log cross-section at different stages of
parameter extraction: (a) original computed tomographic
image; (b) after application of a 7×7 median filter on
image (a); (c) thresholded binary of image (b); (d) boundary
outline of image (c); (e) knot borders predicted by the
artificial neural network; (f) cross-section as reconstructed
from parametric description.

produced from the classified images (Fig. 3a).
With an increment of 1 pixel in radial distance,
one image per radius was produced.

3. The images were thresholded above levels given
by the function (60 – radial distance in pixels)
with a minimum threshold of 5.

4. A routine filled out the gaps in the knots.
5. The images were filtered with a 3×3 median filter

(Fig. 3b).
6. The features were identified and characterized.

Each feature’s point of balance and width was
recorded.

7. Starting with the knots in the first image, a search
for matching knot cross-section in the following
images was performed by measuring the Eu-
clidean distance between the features’ points of
balance. If the Euclidean distance was less than 10
pixels, the two-knot cross-section was considered
to belong to the same knot. Regression models for
knot size and position of knot axis were
calculated.

Fig. 3. Images of a concentric surface around the pith
showing knots as classified by the artificial neural network
(a) and after filtering (b).

greyscale image with the height equal to log length
and the width 364 pixels. In the horizontal direc-
tion, 360 pixels were used to store the radii; two
pixels were used to store the position of the pith in
Cartesian coordinates. The remaining two pixels
were not used. The heartwood border was stored
in the same way, but the created image was
filtered with a 7×7 median filter to reduce the
noise originating from whorls.

The knot parameters were extracted following the
sequence given below.

1. Images marked in the previous step as containing
knots were classified with the ANN and the out-
put of the ANN was mapped to greyscale (0–255)
(Fig. 2e).

2. Starting at a radial distance of 15 pixels from the
pith, 75 images showing concentric surfaces were
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With the parametric descriptions of log geometry
and knot models, the log can be reconstructed (Fig.
2f). The description of every knot is made by 11
parameters (A–K), in compliance with the Swedish
Stem Bank. Figs. 4 and 5 illustrate the notation used
in the following equations. The knot angle in radians
in a tangential direction at the distance rp pixels from
the pith is given by Equation (1). Knowing the scale
in the original CT images, the diameter of the knot in
mm can be calculated. Here, the scale was 350/256
mm pixel−1.

The rotation of the knot axis is given in degrees by
Equation (2), and the longitudinal position within the
log is given in cm by Equation (3). In the Swedish
Stem Bank, parameters E and F are used to describe

the knot diameter in the longitudinal direction. Be-
cause the resolution is 10 mm between the CT im-
ages, the longitudinal knot diameter is better
approximated using Equation (1), with the assump-
tion that the knot cross-section is circular. Hence, the
E and F parameters are not used here. Parameter I is
the distance in mm from the pith to the end of the
knot. Parameter J is the distance in mm from the pith
to the dead knot border; here the dead knot border
has not been assessed. Parameter K is the distance
from the pith to the outer face of the log at the point
where the knot axis intersects the outer face. For a
non-occluded knot, K=I.

Øp=A+B(rp)1/4 (1)

�p=C+D ln(rp) (2)

Z=G+H�rp (3)

Logs from three trees were through-and-through
sawn, yielding two or four unedged boards per log.
On the sapwood side of the outermost pair of boards,
the size and position of the knots were measured. Ten
boards were measured, four boards from the inner
positions and six boards from the outer positions.
The knot size was measured in both longitudinal and
tangential directions. The longitudinal position was
measured with the butt end as a reference, and the
tangential position with the left edge as a reference
(Fig. 6). Corresponding boards were reconstructed by
simulated sawing of the parametrically described logs
(Fig. 7). Real knots and simulated knots were

Fig. 4. Knot geometry notation, projection to a cross-sec-
tion.

Fig. 6. Definition of measurements carried out on the real
boards.

Fig. 5. Knot geometry notation, projection to a radial
section.



U. Nordmark Scand. J. For. Res. 18 (2003)172

Fig. 7. Board reconstructed from simulated sawing based on parametric description of a log (a) and corresponding section
of the computed tomographic image stack (b). NB. Horizontal and vertical scales are not equal.

matched together by means of the Euclidean distance
of the knot position. The maximum distance was set
to 20 mm. The number of correctly described knots
and their size and position were evaluated.

RESULTS

A total of 224 knots was measured on the real
boards, while the simulated boards gave a total of
219 knots. The correlation between predicted and real
number of knots for the 10 boards examined was
high (R2=0.90) (Fig. 8). The proportion of real
knots matched in position by simulated knots was
84�7% (Table 1). In addition to the matching knots,
there was an average of 3.4�2.5 simulated knots not
found on the real boards. Table 2 shows the precision
and variation in predicting the size and position of

knots. The difference in longitudinal knot position
was on average 1.6�4.2 mm (mean�SD), and in
tangential knot position the difference was 0.3�3.6
mm. The predicted knot diameter was on average
close to the real knot diameter. However, the SD of
4 mm indicates that the relative error can be rather
large. In Fig. 9 the predicted tangential knot diameter
is plotted versus the real tangential knot diameter for
all matching knots on boards originating from the
inner pair, while Fig. 10 shows the corresponding
plot for the boards originating from the outer pair.
The relative error is large, and the prediction is better
on the outer boards (R2=0.72) than on the inner
(R2=0.52). On the outer boards, one knot that had
branched off into two small knots inside the log was
recognized as one large knot by the algorithm, giving
the outlier.

DISCUSSION

The number of knots on each board was well pre-
dicted by the number of simulated knots. In a study
on 12 spruce logs (Oja 1998), the prediction of the
number of knots had a correlation (R2) between real
and predicted knots of 0.81, compared with 0.90 in
this study. The proportion of matching knots was
also high.

The SD of the difference of predicted and real knot
diameter was worse than reported by Grundberg
(1999). Comparing 555 knots on boards from five
Scots pine logs, that study reported a SD of 2.7 mm.
Those logs were larger and were cant sawn to pro-
duce two centre planks (50×125 mm) and 19 mm
side boards. The calculated knot diameter is sensitive
to the positioning of the board face at positions close
to the pith for two reasons. When the angle between

Fig. 8. Number of knots measured on the real boards as a
function of simulated number of knots.
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Table 1. Number of matching knots on real and simulated boards

Matching knots

Log Board position nBoard Proportion of real (%)Tree

1 R21 15 831
1 L2 192 901
2 R1 191 793
2 L1 20 804 1
1 R1 272 845

26 1 L1 24 71
37 1 R2 21 84

1 L2 123 808
3 2 R2 14 939

2 L2 143 9310
185All 84

Log refers to position in tree from ground; board position is right or left (R, L) and inner or outer pair (1, 2)

Table 2. Differences in position and size between simulated and real knots

Difference Simulated – Real (mm)

Tang. position Long. diameterBoard Tang. diameterLong. position

−0.5�1.61 1.0�2.9 1.5�2.31.9�4.0
0.4�2.1 0.9�5.11.0�2.8 2.5�5.02

−0.8�2.3 −2.5�2.9 −2.0�4.53 −1.5�2.6
0.2�2.7 −2.3�2.91.1�2.8 −1.0�4.44

2.3�3.45 1.3�3.5 1.1�4.3 2.9�4.7
2.8�4.66 −1.1�6.3 −1.5�4.8 0.1�3.6

1.0�2.9 −1.5�2.74.4�2.9 −0.4�2.47
2.4�1.6 −0.6�2.4 −0.2�2.08 1.0�3.1

−0.9�2.2 0.1�1.51.0�8.0 1.3�1.69
1.0�3.510 1.2�4.0 0.0�3.6 1.4�2.3

0.3�3.6 −0.6�3.9All 0.6�4.01.6�4.2

Data are means�SD.
Long: longitudinal; tang.: tangential.

the knot axis and the board face is small, as it will be
for knots near the wane, the projected knot diameter
changes considerably, even with small changes in the
angle. Knots close to the pith, such as knots at the
centre of the board, are sensitive to the positioning
owing to the rapid development of their diameter
close to the pith. With a board thickness of 19 mm,
the sapwood side of the inner pair of boards will be
close to the pith. This may explain the better predic-
tion of knot diameter on the outer boards (Figs. 9,
10) and the lower accuracy compared with Grund-
berg (1999). The manual measurement of knot diame-
ter on the real boards is also expected to be a source
of variation. Grundberg (1999) reported a SD of 1.2
mm between measurements on 92 knots performed
by two different people.

The position of the knots was surprisingly well
described, considering the low resolution in the longi-
tudinal direction of the CT images and uncertainty of
the shrinkage of the boards. By measuring the posi-
tion on unedged boards, the good results indicate
that both log geometry and knot position are well
modelled by the parametric descriptions. The rela-
tively large errors on knot diameter imply that grad-
ing simulated boards with the explicit Nordic Timber
Grading rules will not produce reliable results at a
single board level. However, for groups of logs larger
than 100, the random error in knot diameter is
expected to have a limited influence on the value and
volume recovery calculated (Grundberg 1999). The
dead knot border was not discriminated by the al-
gorithms. Thus, all knots were classified as sound.
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Fig. 9. Tangential knot diameter on the inner boards.
Measured on real boards versus predicted by simulated
sawing of corresponding boards based on parametric de-
scriptions.

It can be concluded that the parametric descrip-
tions derived by the algorithms described here are
accurate for log geometry and knot position, and that
they predict knot diameter with an acceptable preci-
sion at distances to pith greater than 40 mm. Hence,
the logs from young thinnings augment the Swedish
Stem Bank and can be used for modelling the knot
structure of trees and simulating the yield of different
strategies in forestry and sawing. However, simulat-
ing board faces near the pith will give unreliable
results.
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Grundberg, S. & Grönlund, A. 1997. Simulated grading of
logs with an X-ray LogScanner – grading accuracy
compared with manual grading. Scand. J. For. Res. 12:
70–76.

Hassoun, M. H. 1995. Fundamentals of Artificial Neural
Networks, 511 pp. MIT Press, Cambridge, MA. ISBN
0-262-08239-X.

Koehler, A. 1936. A method of studying knot formation. J.
For. 34: 1062–1063.

Liljeblad, A� ., Johansson, L. G. & Drake, E. 1988. Quality
simulation of saw logs – methods for reconstruction and
disintegration of stems. Trätek rapport I 8812081, 181
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ABSTRACT
Through application of tree models, stem shape and internal knot structure of Scots pine stems 
could be predicted using site, stand and tree variables. Stem shape was described by stem taper 
and cross-sectional eccentricity. Knot properties included were knot diameter, sound knot length, 
loose knot length, number of knots per whorl and longitudinal inclination. This model system 
was then integrated in a sawmill conversion simulation system (Saw2003) in order to evaluate 
lumber recovery in terms of lumber dimension distribution, volume, grade and value. These 
applications showed that it was possible to predict the lumber grade recovery on the basis of 
stand and tree measurements. When comparing results of tree models against empirical data for 
604 logs, the volume recovery of side boards was overestimated with the modeling approach, but 
the volume recovery of centre boards and the grade recovery showed good agreement. For both 
methods, the recovery of the strictest grade decreased slightly with increasing DBH-class, but 
increased with increasing lumber dimension. The results of this study illustrate how the Saw2003 
system can be applied to estimate the lumber volume and grade recovery of standing Scots pine 
trees.

Key Words: Knot properties, sawing simulation, stem eccentricity, taper, timber utilization, wood 
quality.
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INTRODUCTION
The use of models to estimate wood quality attributes, and the application of such models in 
sawmill conversion simulation systems, has been identified as an important method in order to 
link end users’ product requirements with properties of the forest resource (Barbour and Kellogg 
1990, Houllier et al. 1995, Briggs 1996, Barbour et al. 1997, Ikonen et al. 2003). These models 
thereby provide a basis for grading simulated products in terms of defect allowances, lumber 
dimensions and values. Such integrated systems represent flexible tools for evaluating the product 
recovery from a standing timber resource, comparison of different conversion strategies or 
identification of suitable raw material sources for specialized products. 
 These research efforts recursively employ growth models together with taper, live crown 
and branch models over a long time period to simulate the external stem shape and internal knot 
structure of trees at the time of harvest. Although this method has biological appeal, recursive use 
of a large number of integrated models may have implications regarding precision and bias of the 
results, where errors in one model might be magnified over time or carried over into other 
models (Houllier et al. 1995); this would be especially a concern when the models are based on 
different data sources or simulations are extrapolated far beyond the original data. The 
calculations can also become cumbersome when used for a large number of trees. 
 In another approach to sawmill simulation, Usenius and Song (1997), Barbour et al. 
(1999), Chiorescu and Grönlund (2000), Lemieux et al. (2000), Todoroki and Rönnqvist (2002), 
and Nordmark and Oja (2004) use either destructive or non-destructive measurements to 
reconstruct the three-dimensional external shape and internal knot structure of logs in computer-
simulated conversion into lumber. In these cases, the sample available for simulation studies is 
limited to the measured logs, which might be a problem given the expense of measurement 
techniques.
 In Sweden, a national database of Scots pine (Pinus sylvestris L.) stems collected from 
experimental plots, and measured with a medical CT-scanner, has been created (Grundberg et al. 
1995). Through digital image analysis, detailed information concerning internal knot properties is 
obtained: The radial resolution is 1 mm, and the longitudinal resolution is 1 cm. Each knot is 
described by 9 parameters defining location (longitudinal and radial), size (in the tangential 
direction) and quality (length of sound- and loose-knot segments). Also, the location of the pith 
and the radial distance to stem surface (under bark) is included in the database. This data material 
is used by Moberg (2000 and 2005) and Moberg et al. (2005) as a basis for developing statistical 
models of stem taper and internal knot properties with site, stand and tree characteristics as 
independent variables. These models directly predict stem shape and knot properties without the 
recursive use of growth models, and thus represent an alternative to the approach described 
above. This could be an advantage in applications where the historical silvicultural regimes might 
be unknown, and a relevant three-dimensional database might not be readily available, such as: 
Operational logging planning (e.g. harvest scheduling or allocation of logs to individual mills); 
calculating the stumpage fee for a harvestable timber resource; or comparing conversion 
strategies for a specific mill’s catchment area. 
 A system for sawmill conversion simulations - called Saw2003 - has been developed by 
Nordmark (2002). This software can simulate the lumber volume and grade recovery from saw 
logs as described in the Swedish Scots Pine Stem Bank (SSPSB). The objectives of this study have 
been to investigate the possibilities of applying models, based on site and tree characteristics, 
describing internal knot properties and external stem shape in the Saw2003 system, and to 
compare the results from such model simulations with the results from the empirical data of the 
SSPSB in terms of lumber volume and grade recovery. 



Paper III 

- 3 - 

MATERIALS AND METHODS 
The study was based on 192 Scots pine trees sampled from 33 stands. The stands were sampled 
in order to get a broad distribution of growing conditions for Sweden. In each stand, the stems 
were divided into three DBH-classes around the stand quadratic mean DBH, with class limits at 
half a standard deviation above and below this mean. From each DBH-class, two stems were 
randomly chosen (Grundberg et al. 1995). The variation of stand and tree properties have been 
summarized in Table 1. 

Table 1. Summary statistics of the data used to generate stem shape (Fig. 1) and knot structure (Fig. 2). 

Property
Abbre-
viation Unit Min. Mean SD Max.

Age, total AGE years 70 106 27.5 153 
Altitude ALT m 50 218 93.8 420 
Annual ring width, 1-20 years RW1-20 mm 8 40 17 106 
Crown length (Ht – Hllb) CL m 4.10 9.31 2.11 14.9
Crown ratio (CL/Ht) CR  0.19 0.43 0.083 0.64
Diameter, stand mean at breast height DBHmean mm 215 288 54 401 
Diameter, breast height DBH mm 176 285 66.1 476 
Diameter, whorl k Dk mean mm 109 195 49.7 527 
Height, total Ht m 14.1 21.6 3.29 29.0
Height, lowest live branch Hllb m 6.8 12.3 2.88 19.8
Height, whorl k Hk m 0.1 7.18 4.97 19.7
Height increment (Hk – Hk-1), whorl k Hk cm 7 28 9.9 67 
Site index, dominant height at 100 years SI m 16 22.7 3.6 28 
Temperature suma Tsum °C days 606 1035 229 1370 
aIn Sweden, temperature sum can be estimated as a function of altitude and latitude (Moren and Perttu 1994). 

The system of models, used in the calculations, has been illustrated in Figs. 1 and 2. First, stem 
shape is simulated in 1 cm intervals using a taper function Moberg et al. (2005). A series of 
functions were then used to calculate stem eccentricity as described by an ellipse (containing 
magnitude and direction of the main axis of eccentricity). Magnitude of eccentricity was described 
in a segmented, random coefficients model; direction of major axis used a circular-normal model 
assuming first level autoregressive error structure (Moberg et al. 2005). Finally, in order to get 
values compatible with the SSPSB, 360 radii from the pith were generated on the basis of these 
values at each cross-section. 
 Simulation of knot properties started with prediction of whorl location. A height 
increment function (Elfving and Kiviste 1997) was used for this purpose as Scots pine is a uni-
nodal species lacking inter-whorl branches. Next, knot frequency (KF) and mean and maximum 
knot diameter (KDmean and KDmax) of each whorl were calculated as described by Moberg (2005). 
Knot diameter of individual knots (KD) was based on azimuthal direction (KDIR) and a 
stochastic component (assuming a log-normal distribution around the mean). Sound- and loose-
knot lengths (KLsound and KLloose), as well as longitudinal inclination (KI), were a function of this 
predicted knot diameter although a few tree descriptors also had some additional influence 
(Moberg 2005). Finally, the simulated stems were separated into sections corresponding to the 
lengths of the logs in the SSPSB. Through application of these integrated models and algorithms, 
a database containing 604 twin pairs of saw logs, containing compatible data from both model 
simulations and empirical measurements from the SSPSB, could be created. 
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Figure 1. Flow chart describing the system of equations used for simulating the external shape of a model stem. 

RADIAL VARIATION 

l = 1
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then 

then 
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Figure 2. Flow chart describing the system of equations used for simulating the internal knot properties of a 
model stem.

Knot diameter 
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The sawmill simulation system used in the study is a Windows™-based program developed in 
C++ (Nordmark 2002). The software has a graphical interface partly based on OpenGL, allowing 
the user to interact with logs and boards in three dimensions. The simulations were automated 
using a scripting module of the system which exposes most of its functionality to the user for 
custom applications. Cant sawing was used in the modeled sawmill, whereby the first sawing 
machine cut the log into a block and side boards, and the second saw cut the block into 2–4 
centre boards and 2–4 side boards (Fig. 3). The logs were automatically rotated horns down 
(crook up) and centered in both saws. Curve sawing was applied throughout. The sawing patterns 
for different small-end diameter intervals are shown in Table 3. Side boards were edged and 
trimmed, while trimming was the only operation on centre boards; both operations were value-
optimized based on lumber prices and grade. 

Figure 3. Illustration of sawing patterns (using the pattern for the smallest log of Table 3 as an example) used 
with cant sawing. 

Grading was based on wane criteria and knot properties according to the Nordic Timber grading 
rules (Anon. 1994). The boards were graded into Grade A, B, or C, where A is the strictest grade. 
The grading rules define allowable wane, knot diameter, number of knots and sum of knot 
diameters on edges and faces. Separate limits are given for sound and loose knots in grades A and 
B. The boards were priced according to Table 2. In addition to the lumber produced, the volume 
of by-products was calculated (sawdust and chips). The price of by-products was 200 SEK m-3.
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Table 2. Knot and wane allowances, as well as lumber values, for lumber grades (adapted from Nordic Timber, 
Anon. 1994). 

Board dimension  Nordic Timber grades 
Thickness Width  A B C 

   Maximum knot size (mm)a

16-25 75-115  20 35 50 
 125-150  25 40 55 
 175-225  30 45 60 

32-38 75-115  25 40 55 
 125-150  30 45 60 
 175-225  35 50 65 

44-50 75-115  30 45 60 
 125-150  35 50 65 
 175-225  40 55 70 

63-75 75-115  35 50 65 
 125-150  40 55 70 
 175-225  45 60 75 
   Number of knots of maximum 

size per 1 m section 
All All  4 5 6 

   Wane 
Max depth at each edge (mm) 

19 All  4.9 5.9 6.8 
25 All  5.5 6.8 8.0 
32 All  6.2 7.8 9.4 
38 All  6.8 8.7 10.6 
50 All  8.0 10.5 13.0 
63 All  9.3 12.5 15.6 
75 All  10.5 14.3 18.0 

  Wane 
Max width at each edge (mm) 

All All  10 15 20 
  Value 

($ m-3)
19-32 All  300 200 143 
38-75 All  262 200 143 

a Allowances are listed for sound knots; limits for loose knots are 70% of sound knots in grades A and B, 100% in 
grade C. 
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Table 3. Sawing patterns and related log small-end diameter intervals (see Fig. 3 for an illustration). 

Log small-end 
diameter (mm) Sawing pattern (mm) 

Min. Max.  First saw Second saw 
100 129  19,75,19 19,38,38,19 
130 149  19,100,19 19,38,38,19 
150 169  19,100,19 19,50,50,19 
170 184  19,125,19 25,50,50,25 
185 194  19,125,19 19,63,63,19 
195 209  19,19,150,19,19 19,25,50,50,25,19 
210 219  19,19,150,19,19 19,25,63,63,25,19 
220 229  19,19,175,19,19 19,25,50,50,25,19 
230 249  19,19,175,19,19 25,25,63,63,25,25 
250 264  19,19,200,19,19 25,25,63,63,25,25 
265 284  19,19,200,19,19 19,25,75,75,25,19 
285 304  19,19,225,19,19 19,25,75,75,25,19 
305 324  19,25,200,25,19 19,25,50,50,50,50,25,19 
325 344  25,32,225,32,25 25,25,50,50,50,50,25,25 
345 384  25,32,200,32,25 19,25,63,63,63,63,25,19 
385 449  25,32,200,32,25 19,25,75,75,75,75,25,19 
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RESULTS
The simulated stem shape and knot properties of a sample stem is illustrated in Fig 4. Knot 
diameter increased asymptotically above ground level to just below the live crown. Above this 
level, knot diameter increased in a second-order polynomial, reflecting the build up of biomass as 
the tree gets larger and older (Moberg 2000). After reaching a maximum at the base of the live 
crown, knot diameter became smaller, and was bounded to zero at the top of the stem. The log-
normal distribution of individual knots around the mean was evident in the wider distribution at 
higher mean values, and that positive values were consistently obtained (Fig. 4a). Stem taper was 
estimated through a segmented polynomial function consisting of three sections. It was bounded 
to diameter at breast height and to zero at the top of the tree (Fig.4b). Whorl location has been 
illustrated by the pith in Fig 4b, whereby the maximum height increment was evident in the lower 
half of the stem. A more or less cylindrical zone of sound knots could be identified around the 
pith, and further outside there was a zone of loose knots. At the base of the stem, there was a 
zone of clear, knot-free wood (Fig 4b). 

Figure 4. Illustration of simulated knot diameter, knot type, whorl location and stem taper. 

A comparison of the results from model simulations with the equivalent data from measurements 
over the diameter strata from the sampling strategy of the SSPSB has been presented in Table 4 
and Figs. 5 and 6. Both data sources indicated increasing lumber volume recovery with increasing 
diameter class, and the level of volume recovery of centre boards was about the same when 
comparing the data sources against each other. The volume recovery of side boards was 
overestimated, and the volume of chips was underestimated, in the modeling approach, but there 
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was no apparent systematic relationship of bias to tree size. The grade recovery of Grade B 
increased slightly with the diameter size classes at the expense of Grade A recovery; Grade C 
recovery was about the same for all tree sizes. In comparison with the measurement data, the 
model simulations resulted in a slight underestimation of Grades A and C, with a corresponding 
overestimation of Grade B. The net effect on value recovery, expressed per unit volume, was a 
2.7 % larger recovery for the modeling approach. The combined effect volume and grade 
recovery resulted in a total value recovery difference of 9.2 % between the two methods. 

Table 4. Total sawlog volume, lumber volume, volume recovery rate, total lumber value and relative product value 
using tree models and empirical measurements respectively. 

 Log 
volume

Board
volume

Residue
volume

Volume
yield

Board
value

Value
recovery

 (m3) (m3) (m3) (%) ($) ($·m-3)
Model simulation 104.0 58.3 45.7 56.0 12,500 214.57 
Empirical data 106.5 54.7 51.8 51.3 11,600 212.57 
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Figure 5. Lumber volume yield by tree size class using tree model and empirical measurement data respectively.

The results from model simulations have been compared with the equivalent data from 
measurements in terms of simulated board thickness in Figs. 7 and 8. The lumber volume 
recovery from the two data sources was quite similar, although the volume of side boards was 
overestimated by about 20% in the modeling approach due to the difference in the thinnest 
thickness class. However, there did not seem to be any systematic bias of estimates related to 
lumber thickness. The grade recovery level was very similar when comparing the two data 
sources: In both cases, recovery of Grade A increased over the thickness classes, primarily at the 
expense of Grade C recovery. The largest dimension class for both side and center boards did 
not follow this pattern, but these classes, on the other hand, contained only a small volume. The 
modeling approach overestimated the unit value of side boards by 2.7 % and center boards by 1.2 
%.
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Figure 6. Lumber grade distribution by tree size class using tree model and empirical measurement data 
respectively.

0

2

4

6

8

10

12

14

16

18

19 25 32 38 50 63 75

Board thickness class (mm)

B
o
a
rd

 v
o
lu

m
e
 y

ie
ld

 (
m

3
)

Measurement data

Model simulation

Side boards Centre boards

Figure 7. Lumber volume yield by board thickness class using tree model and empirical measurement data 
respectively.



Paper III 

- 12 - 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

  D
at

a

M
od

el

 D
at

a

M
od

el

  D
at

a

M
od

el

  D
at

a

M
od

el

  D
at

a

M
od

el

D
at

a

M
od

el

  D
at

a

M
od

el

  D
at

a

M
od

el

  D
at

a

M
od

el

Board thickness class (mm)

P
e
rc

e
n

t Grade C

Grade B

Grade A

19              25              32         Total SB        38             50            63           75          Total CB

Centre boardsSide boards

Figure 8. Lumber grade distribution by board thickness class using tree model and empirical measurement data 
respectively.

DISCUSSION
The conversion simulations results showed the possibilities to apply statistical models, based on 
tree, stand and site variables, to predict the lumber volume and grade recovery. The Saw2003 
system is also used for conversion simulation by Nordmark and Oja (2004) to predict board 
values based on X-ray scanning and optical three-dimensional scanning measurements, and is 
judged to perform adequately. It is also successfully used by Nordmark (2002) to study the 
possibilities of controlling bucking and log sorting with respect to value recovery. The results of 
the present study therefore extend the functionality of the Saw2003 system for standing Scots 
pine trees. This could be useful in planning applications to support decisions early in the solid 
wood supply chain regarding industrial potential of a standing timber resource for assessing 
stumpage rate, allocation of sawlogs to different specialized mills or evaluation of future 
conversion strategies for a specific mill. 
 The volume of sawlogs was underestimated through the model approach, but yet resulted 
in a larger volume of lumber (Table 4). Fig. 7 indicated that the reason for overestimation of 
lumber volume was primarily the high recovery of thin side boards (19 mm). These boards were 
nearest the stem surface, making it likely that the models did not accurately reflect the irregular 
shape of the stem surface. Although recovery of by-products was not reported at the board level, 
this was also supported in Table 4, which showed higher recovery of chips (from slabs outside of 
the side boards or the trimmed ends of boards) in the empirical data. Another source for this 
inaccuracy could be that, although the modeling approach took stem eccentricity of stem cross-
section into account through an ellipse shape, it assumed longitudinally straight stems. Curve 
sawing, as was applied in the modeled sawmill for the empirical data, compensates for some 
regular longitudinal miss-shapes such as sweep or crook that otherwise would result in volume 
losses (Wang et al. 1992, Todoroki and Rönnqvist 1998). However, the logs in the SSPSB also 
had multiple irregularities such sinuous shapes which would result in volume recovery losses even 
with curve sawing. In this study, it was not possible to explore if the higher volume recovery of 
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modeling data was more due to longitudinal (e.g. multiple crooks) or radial stem irregularities (e.g. 
due to whorls or buttress). 
 Within-stand differentiation due to inter-tree competition leads to some trees, with 
improved micro-climates or genetic properties, increasing their girth at the expense of 
neighboring trees (Oliver and Larson 1990). These dominant trees will have larger crowns, 
branches and therefore knots than the co-dominant or suppressed trees (Larson 1969, Mitchell 
1975). A number of studies find that lumber from larger stems, within stands, is down-graded 
due knot size: Johansson (1992) concerning Norway spruce graded according to the old Swedish 
lumber grading rules (Anon. 1982); Middleton et al. (1995) concerning lodgepole pine and the 
Standard Grading Rules for Canadian Lumber for Structural Light Framing and Structural Joists 
and Planks (NLGA, Anon. 1998); and Middleton and Munro (2001) concerning western hemlock 
for both the NLGA and the Japanese Agricultural Standard for Structural Lumber (Anon. 1991). 
Although the differences were slight, both the empirical and modeling approaches of the present 
study support these findings (Fig. 6). 
 Grading rules, including Nordic Timber (Anon. 1994), typically have a larger allowance 
for knot size with larger pieces of lumber. Although there is a positive correlation between knot 
size and tree size when comparing within-stand effects, when comparing the universal 
relationship between size of lumber and grade recovery in a broad sample such as the SSPSB, the 
effects of growth various conditions are mitigated by other factors. Large logs in this dataset 
could be the effect of high growth rates, or old age at the time of harvest. Likewise, small logs 
could either be the effect of slow growth rates, young age or height of the log in the stem. As a 
result, it is likely that it was the grading rules which were the reason for the improved grade 
recovery with board thickness (Fig. 8), and that the underlying biological factors were 
compounded together. Similar effects are observed with the old Swedish grading rules for Scots 
pine (Grönlund 1994), and the NLGA for Douglas-fir (Middleton and Munro 1989) and 
lodgepole pine (Middleton et al. 1995). 

CONCLUSIONS
The conversion simulations showed that it was possible to predict the lumber volume and grade 
recovery on the basis of tree and stand measurements. However, the overestimation of volume 
recovery rate due to the assumption of straight stems using tree models needs further attention. 
For example, it would be possible to introduce stochastic elements in order to predict three-
dimensional stem crook in order to obtain more realistic stem shapes. 
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As the sawmill industry strives towards customer orientation, the need for sorting of logs

according to quality has been recognized, and automatic sorting based on measurements by

three-dimensional (3D) optical log scanners has been implemented at sawmills. There is even a

small number of sawmills using the X-ray log scanner for automatic log-sorting. At the log-

sorting stage, the potential of the raw material to fulfil the needs has already been reduced by the

decisions taken when the trees were bucked (cross-cut) into logs. Thus, the application of

predictions of the boards’ properties at the bucking stage is desirable. This study investigates the

possibility of predicting board values from logs based on 3D scanning alone and 3D scanning in

combination with X-ray scanning of stems. This study is based on 628 logs scanned by computed

tomography that make up the Swedish Pine Stem Bank. Simulated sawing of the logs gave

product values for each log. Prediction models on product value were adapted using partial least

squares regression and x -variables derived from the properties of the logs and their original

stems, measurable with a 3D log scanner and the X-ray LogScanner. The results were promising.

Using a 3D scanner alone, R2 was 0.68, and using a 3D scanner in combination with an X-ray

LogScanner, R2 was 0.72. Key words: 3D scanning, automatic grading, bucking, cross-cutting, log

scanning, PLS, sawlogs, simulation.
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INTRODUCTION

Advances in research in the field of log-sorting at

sawmills has reached the point where the quality of the

centre boards yielded can be predicted for individual

scanned logs. This is true for quality based on

parameters such as stiffness (Aratake et al. 1992,

Sandoz 1996, Ross et al. 1997, Oja et al. 2001) and

knot structure (Grace 1994, Andersson 1997, Jäppinen

2000, Oja et al. 2000). Technologies used to scan the

logs are ultrasonic measurement, measurement of

longitudinal stress waves, two-axis shadow scanners,

three-dimensional (3D) optical scanners and two-axis

X-ray scanners. As the sawmill industry strives to-

wards customer orientation, an efficient method of

log-sorting is necessary so that the required combina-

tions of the board dimensions and qualities can be

produced. However, at the log-sorting stage, the

potential of the raw material to fulfil requirements

has already been reduced by the decisions taken when

the trees were bucked (cross-cut) to logs, hence the

desirability of the application of predictions of the

boards’ properties in the bucking operation.

The 3D optical scanner used for scanning of logs at

high speed is able to provide a detailed model of the

external log geometry. Variables derived from the log

geometry such as different measures of taper and

unevenness of the mantle surface (i.e. bumpiness) have

proven useful for grading of logs according to knot

properties on the centre boards of Scots pine (Pinus

sylvestris L.) by Lundgren (2000) and Oja et al. (2003),

and of Norway spruce (Picea abies (L.) Karst.) by

Jäppinen & Beauregard (2000). The two-axis X-ray

LogScanner (Grundberg & Grönlund 1997) provides

images of the density variations within the scanned

logs. Simulations have shown its ability to predict knot

properties in Scots pine and Norway spruce sawlogs

(Grundberg & Grönlund 1998), and real measure-

ments confirmed its ability to classify logs by grade

(Oja et al. 2003) based on density variations. In a

Scand. J. For. Res. 19: 473�/480, 2004

# 2004 Taylor & Francis ISSN 0282-7581 DOI: 10.1080/02827580410030172



bucking context, additional variables derived from 3D

scanning and X-ray scanning describing the stem, and

relations between different stem sections can be added

to the prediction model.

The stem-bucking problem is usually addressed with

dynamic programming (DP) (Dreyfus & Law 1977),

where the objective is to maximize the summed value

of the logs cut from the stem (Pnevmaticos & Mann

1972). The method finds the optimal combination of

cuts out of thousands of possible combinations. The

challenging part of the problem is not the DP

algorithm, but rather the pricing of logs. For pulp

logs this is not an issue as long as there is a simple

volume and value relationship, but for sawlogs the

price needs to be related to the expected quality of the

boards sawn from the log. Faaland & Briggs (1984)

and Reinders & Hendricks (1989) integrated a log-

sawing algorithm that evaluates the value of the

boards sawn from the logs into the bucking model.

The log breakdown models assumed simplified geo-

metric log descriptions. More realistic log breakdown

models can be found in work by Lewis (1985), Funck

(1993), Todoroki (1996) and Nordmark (2002), with

more detailed levels of description of log shape.

The value of a log can be expressed as the sum of

product values extracted from the log, while the value

of each product can be expressed as the product of

volume yield and product value per volume:

Value of log

�Vsawdust �Psawdust�Vchips �Pchips�Vboards �Pboards (1)

where V�/volume (m3) and P�/price (SEK m�3).

With the 3D optical log scanners and the use of log

breakdown simulators it is possible to estimate the

volume yield of boards, chips and sawdust, whether it

is an actual log or a prospect log that is a segment of a

scanned stem. Usually chips and sawdust have fixed

prices without variation due to grade, while the price

of boards varies with grade. With the volume yield

estimated with a log breakdown simulator, the missing

link in estimating the value of a log is the ability to

predict the value of the timber per volume (Pboards).

The aim of the present study was to assess the

accuracy of predicting product values of boards in

logs not yet cut, from measurements on stems with a

3D scanner alone or in combination with an X-ray

LogScanner.

MATERIALS AND METHODS

The study was approached using simulation techni-

ques. The Swedish Pine Stem Bank (SPSB) (Grund-

berg et al. 1995) served as the wood supply. Simulated

sawing of the logs in SPSB gave product values for

each log. Using partial least squares regression (PLS)

(Geladi & Kowalski 1986), prediction models on

product value were adapted with x -variables derived

from the properties of the logs and their original

stems, measurable with a 3D log scanner and the

X-ray LogScanner (Grundberg & Grönlund 1997).

The SPSB is a database containing detailed infor-

mation on 628 logs originating from 198 Scots pine

trees. The project is based on computed tomography

(CT) scanning of these logs, which were carefully

selected from 33 well-documented sample plots all

over Sweden. From each sample plot six trees were

taken: two small, two medium-sized and two large

trees. The trees were manually bucked, and the sawlogs

obtained were CT scanned. Analysing the images

achieved, parametric descriptions of the outer shape

and knot properties of each log were compiled and

stored in the database. The outer shape is given as

cross-sections, at an interval of 1 cm, described using

polar coordinates with the pith as the origin. The

knots are described using a set of mathematical

models. Each knot has its own coefficients in the

models, making it possible to compute the position of

the knot axis in three dimensions as well as the size of

the knot at different positions along its axis. The order

of the logs within the trees as well as their rotational

position during the CT scanning was documented,

thus allowing for reconstruction of the stems. From

the descriptions of the logs’ outer shapes, variables

were derived describing surface unevenness, taper and

diameter of the logs. This simulates what can be

computed from the output of raw data from a

commercial 3D optical log scanner. The two-axis

X-ray LogScanner was simulated by processing the

CT images of the logs as described by Grundberg &

Grönlund (1997). By further processing of the simu-

lated signals from the X-ray LogScanner each whorl

within the logs was described by its longitudinal

position, volume and longitudinal extension. Second-

ary variables describing the presence of whorls were

formed. Variables describing the stem’s properties and

variables of the log’s relation to the stem were added.

These variables included length of stem, taper of stem,

log position in stem, and the relation between log top

diameter and diameter of the stem at breast height.
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Two models were fitted to the data, one using variables

from both the 3D and X-ray (M:3D-X), and one using

variables from the 3D scanner alone (M:3D).

The sawing simulator used is a WindowsTM-based

program developed in C�/�/. The software (Saw2003)

has a graphical interface partly based on OpenGL,

allowing the user to interact with logs and boards in

three dimensions. The program is capable of reading

log descriptions from the SPSB database and option-

ally assembling logs into stems. The sawmill modelled

uses cant sawing, where the first sawing machine cuts

the log into a cant and side boards, while the second

sawing machine cuts the cant into two to four centre

boards and two to four side boards (Fig. 1). Side

boards are edged and trimmed, while trimming is the

only operation on centre boards. Both edging and

trimming are value-optimizing operations based on

timber prices and grade. Grading is based on wane

criteria and knot properties. The simulator also

exposes a great deal of its functionality to a scripting

module. Through scripts, simulations can be auto-

mated, and reports of the sawing process and proper-

ties of logs and boards can be tailored. In total, 615

logs from the SPSB were included in the study.

Fig. 1. Cant sawing. The first sawing machine cuts the log into side boards and a cant. The cant is then rotated by 90 degrees

and cut by the second sawing machine into side boards and centre boards. Side boards are further processed by edging and

trimming, while trimming is the only operation on centre boards. Example with the first sawing pattern listed in Table 1.

Table 1. Sawing patterns and related log top end diameter intervals (see Fig. 1)

Log top diameter (mm) Sawing pattern (mm)

Min. Max. First saw Second saw

100 129 19, 75, 19 19, 38, 38, 19

130 149 19, 100, 19 19, 38, 38, 19

150 169 19, 100, 19 19, 50, 50, 19

170 184 19, 125, 19 25, 50, 50, 25

185 194 19, 125, 19 19, 63, 63, 19

195 209 19, 19, 150, 19, 19 19, 25, 50, 50, 25, 19

210 219 19, 19, 150, 19, 19 19, 25, 63, 63, 25, 19

220 229 19, 19, 175, 19, 19 19, 25, 50, 50, 25, 19

230 249 19, 19, 175, 19, 19 25, 25, 63, 63, 25, 25

250 264 19, 19, 200, 19, 19 25, 25, 63, 63, 25, 25

265 284 19, 19, 200, 19, 19 19, 25, 75, 75, 25, 19

285 304 19, 19, 225, 19, 19 19, 25, 75, 75, 25, 19

305 324 19, 25, 200, 25, 19 19, 25, 50, 50, 50, 50, 25, 19

325 344 25, 32, 225, 32, 25 25, 25, 50, 50, 50, 50, 25, 25

345 384 25, 32, 200, 32, 25 19, 25, 63, 63, 63, 63, 25, 19

385 449 25, 32, 200, 32, 25 19, 25, 75, 75, 75, 75, 25, 19
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Thirteen were excluded owing to missing or corrupt

data. The logs were automatically rotated horns down

(crook up) in the first saw and centred in both saws.

Curve sawing was applied. Normal sawing patterns for

different intervals of the small end diameter of the logs

are shown in Table 1. Two or three sawing patterns

were evaluated for each log, the normal pattern and

the patterns with diameter intervals above and below.

For the smallest logs, only the pattern with a diameter

interval above was added. The boards were graded A,

B or C following the Nordic Timber Grading Rules

(Anon. 1994). The grading rules define allowed wane,

and the rules also state limits on knot diameter and

sum of knot diameters on edges and faces for sound

and dead knots, respectively. Grade A has the strictest

allowances on the above-mentioned properties and

grade C has the widest allowances. The boards were

priced according to Table 2. The processing of a log

results in a list of priced boards. Dividing the summed

value of the boards by their summed volume gives the

average value per volume for boards sawn from that

particular log with a specific breakdown pattern. An

average (AVG) for each log was calculated on the two

or three different breakdown patterns for each log

sawn using eq. (2). The AVG was used as the response

predicted by PLS regression.

AVG�
1

P

XP

p�1

XBp

b�1

Valueb

XBp

b�1

Volumeb

(2)

where AVG�/mean of value per volume for a log

(SEK m�3), P�/number of breakdown patterns, and

B�/number of boards.

PLS regression was chosen because it is based on

the assumptions that the x -variables are correlated,

that there is noise in the data and that there can be

structures in the residuals (Lindgren 1994). Because of

this, PLS regression was well suited to this investiga-

tion, and the PLS analysis was carried out using the

software SIMCA-10.0 (Anon. 2002). One-hundred

observations were excluded so as to be used as an

independent test set. Two models were calibrated for

the remaining 515 observations in the dataset. The

coefficient of determination (R2) and a Q2 value based

on cross-validation (Martens & Naes 1989a ) were

calculated. When cross-validating, N models are built,

each time excluding an N th part of the observations

and thereby creating a training set. Each model is then

tested on the observations that were excluded when

building the model (the test set). Q2 represents the

proportion of variance of y -values in the test set that is

explained by the model. Hence, Q2 is a measure of the

model’s ability to predict future observations, i.e.

observations that were not included when building

the model. A model that explains random variations

in the training set will fail when tested on new

observations; hence, Q will be low for such a model

(Martens & Naes 1989b).

RESULTS

The output of the simulated sawing with normal

sawing patterns is given in Table 3. Centre boards

account for 68% of the produced volume. However,

the centre boards’ share of total value is lower, at 61%.

This is due to the high share of high-value grade A

side boards. The high price given to grade A side

boards, compared with grade B and C side boards, is

Table 2. Timber price list used

Price by board type (SEK m�3)

Grade Side boards Centre boards

A 3000 1850

B 1400 1600

C 1100 1000

Table 3. Volume yield by grade and relative distribution

of volume: output from simulated sawing of the Swedish

Pine Stem Bank with normal sawing pattern

Grade Volume (m3) Share (%)

Centre boards A 7.8 20 13

B 21.2 54 37

C 10.0 26 17

39.0 100 68

Side boards A 8.6 46 15

B 2.7 15 5

C 7.2 39 12

18.5 100 32

Table 4. R2 and root mean square error (RMSE) for

the two partial least squares regression models

R2 RMSE (SEK m�3)

Model Training set Test set Training set Test set

M:3D-X 0.72 0.75 183 178

M:3D 0.68 0.72 195 189
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also the cause of the high share, as the edging and

trimming operations are value optimizing. Results for

the two PLS models calibrated are shown in Table 4.

The model M:3D-X was calibrated with three princi-

pal components and with R2�/0.72 and Q�/0.71. The

model based on 3D alone (M:3D) was calibrated with

three principal components and with R2�/0.68 and

Q�/0.67. The difference between the models is not

significant. Plots of predicted AVG versus observed

AVG for the training set and the independent test set

are shown in Figs 2 and 3. Variables found to be

significant are shown in Table 5. Model M:3D-X

comprises 21 significant variables. In summary, high

values (AVG) are achieved with large-diameter,

smooth (no bumps) butt logs with large butt end taper

from tall trees, and with low to moderate values on X-

Fig. 2. Predicted and observed average board value (AVG)

for the training set of 515 logs using model M:3D-X.

Fig. 3. Predicted and observed average boardvalue (AVG) for

the independent test set of 100 logs using model M:3D-X.

Table 5. Significant variables and their coefficients in the partial least squares regression models

Coefficient

Variable Description M:3D-X M:3D

topDiam Small end diameter of log 0.074 0.062

buttDiam Large end diameter of log 0.076 0.084

relDiam Diameter of log relative to stem’s diameter at breast height 0.104 0.088

volume Log volume 0.054 0.040

taper Taper of log �/ 0.110

buttTaper Taper of log at large end 0.090 0.143

logPos Height position of log within stem �/0.093 �/0.089

relPos Log’s position relative to stem length �/0.121 �/0.122

bump0�/5 Proportion of log with bumpiness in the interval 0�/5 0.128 0.186

bump5�/10 Proportion of log with bumpiness in the interval 5�/10 �/0.132 �/0.159

bump10�/15 Proportion of log with bumpiness in the interval 10�/15 �/0.087 �/0.159

bump15�/20 Proportion of log with bumpiness in the interval 15�/20 �/0.042 �/0.090

bump20�/30 Proportion of log with bumpiness in the interval 20�/30 �/0.057 �/0.082

bump30�/50 Proportion of log with bumpiness in the interval 30�/50 �/ �/0.070

nWhorls Number of whorls within log �/0.067 �/

wDist0�/20 Proportion of log with distance between whorls in the interval 0�/20 �/0.087 �/

wDist20�/40 Proportion of log with distance between whorls in the interval 20�/40 0.081 �/

wSumLgt Summed longitudinal extension of all whorls within log �/0.108 �/

wLgt0�/5 Proportion of whorls within log having longitudinal extension in the interval 0�/5 �/0.080 �/

wLgt15�/30 Proportion of whorls within log having longitudinal extension in the interval 15�/30 �/0.067 �/

wVol25�/50 Proportion of whorls within log having a volume in the interval 25�/50 0.042 �/

wVolButt Average volume of whorls in the butt log section of the stem �/0.038 �/

wLgtButt Average longitudinal extension of whorls in the butt log section of the stem �/0.050 �/

Coefficients are scaled and centred, making their respective contributions comparable.
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Fig. 4. Average board value (AVG) predicted with model M:3D on a 4 m log at different positions within the stem. Example

with three stems.

Fig. 5. Gross value of a 4 m log at different positions within the stem estimated by combining predictions of board values with

model M:3D and volume yield predicted with the sawmill simulator software Saw2003 and adding the value of byproducts.

Example with three stems.
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ray-measured knot properties in the log and in the

lower part of the stem. Model M:3D comprises 14

significant variables. The variables and the sign of the

coefficients were the same as in model M:3D-X, with

the exception of the X-ray LogScanner variables that

were excluded and two variables added. An example of

the application of model M:3D on three stems is

provided in Fig. 4 and the example is extended to the

prediction of log values in Fig. 5. In both examples a

log 4 m long was assumed, but values can be predicted

on logs with any length between 3.0 and 5.6 m.

DISCUSSION

The results obtained show the ability to predict board

values from logs based on measurements on stems

with a 3D optical log scanner and a 3D optical

scanner in combination with an X-ray LogScanner.

By combining one of the models with the results of

log breakdown simulations log values can be predicted

for any segment of a scanned stem and used in a DP

algorithm finding the optimal bucking pattern. The

application of such predictions in a bucking algorithm

needs to be evaluated before their usefulness can be

established. When assessing the results, one must bear

in mind the stochastic nature inherent in log break-

down. With discrete limits on maximum knot dia-

meter allowed in different grades, simply rotating the

log by a few degrees in the first saw will change

knot diameters on the boards, and thus the boards’

grades might change. Furthermore, severe defects near

the board’s ends are likely to be trimmed off, avoiding

downgrading, while a defect in the board’s midsection

is more likely to cause downgrading. Without precise

knowledge of internal defect location in a log, it is

not possible to predict reliably the grade, and from

this the value, of the boards to be sawn from that

particular log.

Earlier research on log-sorting using 3D scanner

data (Jäppinen 2000) or X-ray LogScanner data (Oja

et al. 2000), or both in combination (Oja et al. 2003),

has shown its good ability to predict grade on centre

boards. The average board values (AVG) predicted in

this study are a fusion of the values of centre boards

and side boards, and can be regarded as prediction of

grades on the boards weighted by their price. It is

possible that the influence of the previously discussed

randomness in board grades is reduced as more

boards contribute to the AVG.

The combined use of 3D and X-ray scanners gives a

moderate improvement in prediction accuracy com-

pared with using 3D alone. If grading were based on

properties other than knots, e.g. heartwood, density or

distance between whorls, the difference could be

larger, as the X-ray LogScanner has proven useful

for such predictions (Grundberg & Grönlund 1998).

Another advantage of using the X-ray LogScanner in

combination with 3D log scanning is that more

collinear variables in the PLS model make it less

sensitive to noise.

This study was based on a nationwide origin of the

wood supply by using the SPSB. The relatively strong

result from this study suggests that unevenness and

density variations in logs and stems are general

indicators of knot properties and that models devel-

oped will be robust to changes in a sawmill’s raw

material catchment area. Without further analysis it is

not possible to foresee how locally adapted models will

perform in relation to those presented here. However,

when there is a change in the relative prices of the

different grades the models need to be recalibrated.

Once the variables and structure of the model used

have been established, recalibration can be done quite

easily.
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Value recovery and production control in
bucking, log sorting, and log breakdown

Urban Nordmark✳

The process of converting trees to
lumber with grades and dimensions
specified by the customer’s need is a
chain of closely linked operations. At an
early stage of the process, the bucking
operation occurs. In Scandinavia, buck-
ing is typically done at the harvesting
site, while in North America the bucking
is often done at the sawmill. At this stage,
where the stem is cut into sawlogs, the di-
mensions of a particular log (i.e., length
andsmall-enddiameter)placeupper lim-
its on the length, width, and thickness of
the lumber that can be sawn from it.
While shorter and smaller lumber di-
mensions can be sawn from the same log,
production economy will suffer as the
volume yield drops. This means that un-
dersized logs, as well as oversized logs,
are undesirable, and it emphasizes the
importance of high measurement accu-
racy (Chiorescu and Grönlund 2000).

With the cut-to-length system, logs
delivered to the sawmill do not carry in-
formation on their individual dimen-
sions as recorded by the harvester. It is
therefore necessary to measure the logs
in order to assign an appropriate break-
down pattern to each log and optionally
sort them into diameter classes repre-
senting different sawing patterns so that
a batch of logs can be processed with the
same sawing pattern. The measuring de-
vice used in log sorting measures the
shadow of the log in one, two, or three
directions, or the true outer shape with
laser triangulation. Log sorting can be

done before debarking, admitting the dif-
ficulties with varying bark thickness and
missing bark on parts of the log, or it can
be done on debarked logs for higher ac-
curacy. With the tree-length system, the
bucking and log sorting can be per-
formed in one operation or in two sepa-
rate operations using any of the these
measuring devices.

The number of possible bucking pat-
terns increases quickly with the length
of the stem and the number of feasible
log lengths. The number of possible
bucking patterns can easily exceed
10,000. The optimization problem is usu-
ally addressed with dynamic program-
ming (DP) (Dreyfus and Law 1977)
maximizing the value of the logs cut
from the stem (Pnevmaticos and Mann
1972). The challenging part of the prob-
lem is not the DP algorithm, but rather
the pricing of logs. One way of pricing
the logs is the use of a log price list with
individual prices for different log di-
mensions. The log price list then con-
trols the bucking, and as a consequence
it acts as the interface through which the
sawmill communicates its need for the
supply of specific log dimensions. An-
other way of pricing the logs is by using
a log breakdown simulator for estimat-
ing the value yield of a log. The integra-
tion of log breakdown into the bucking
problem has been addressed in earlier
research (Faaland and Briggs 1984,
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Abstract
This study investigates how value recovery and production control are affected by

the measurement techniques used in bucking and log sorting. The study was ap-
proached using simulation techniques. A database of 48 well-described young soft-
wood stems (Pinus sylvestris L.) served as the wood supply, and a sawmill simulator
able to read and process the stems was used to predict the outcome of the sawing pro-
cess. In the simulations, five bucking alternatives and three log-sorting alternatives
were evaluated. In addition, combinations of production control were employed in
bucking, log sorting, and log breakdown with the target set to produce a given volume
share of four specific products. In total, 28 simulations were carried out. The results in-
dicate that the bucking method has greater influence on value recovery than the method
of log sorting has. Results also indicate that the more process stations involved in pro-
duction control, the better the demand targets are met (the degree of apportionment),
but the lower the value and volume recovery become. Production control in bucking,
logsorting,and logbreakdownhadalmostequaleffecton thedegreeofapportionment.



Reinders and Hendriks 1989, Maness
and Adams 1991), where simplified log
geometry models free from defects were
used. A full 3D profile of a log with high
accuracy opens up the possibility of sim-
ulating the outcome of products from a
sawing operation with high precision. In
such a simulation, it is possible to rotate
the log, apply curve sawing and, finally,
edge and trim the boards with respect to
wane criteria. Different sawing patterns
and positioning in the saws can be evalu-
ated, and the set-up yielding the highest
value can be chosen for each log.

In addition to 3D profiling of stems,
their inner properties can be revealed us-
ing a computed-tomography-based (CT)
scanning system, allowing for even more
realistic simulation of the product’s
grades in production control. Due to high
cost and low throughput, CT-based log
scanners have not yet been deployed in
bucking or log sorting, but they might
well be in the future.

Further downstream, sideboards are
processed by an edger in which the width
is set and all boards are eventually trim-
med to their final length. Both edging
and trimming are based on optimiza-
tions that, preferably, are value based.
Prices then can be used to control the
operation in bucking, log sorting, and
breakdown. Optimizing each process in-
dependently of the others may lead to
solutions that are not globally optimal to
the chain of operations converting trees
to lumber (Nordmark and Chiorescu
2001). However, in order to reach a glob-
ally optimal solution for a sawmill’s
production, thorough knowledge of the
entire wood supply for the targeted
planning period is required. One alter-
native is to pass information about the
ongoing production to all process sta-
tions to ensure that they all optimize on
the same premises. Though still not
globally optimal, it’s a workable solu-
tion in real production.

The bucking and sawing model de-
scribed by Faaland and Briggs (1984)
operates on a single stem at a time, while
Maness and Adams (1991) focused on
the log allocation problem where saw-
mill production was optimized on a
weekly level. Maness and Adams (1991)
also accounted for inelastic demand by
controlling price/volume relationships.
In this study, realistic log geometry and
knot properties are considered to vary-
ing degrees in the bucking and sawing
model, which accounts for inelastic de-
mand by continuously controlling price/
volume relationships.

The aim of this study was to investi-
gate how value recovery and production
control are affected by the measurement
techniques used in bucking, log sorting,
and log breakdown.

Material and methods
The study was approached using sim-

ulation techniques. A database of 48
well-described softwood stems served
as the wood supply, and a sawmill simu-
lator able to read and process the stems
was used to predict the outcome of the
sawing process. In the simulations, five
bucking alternatives and three log sort-
ing alternatives were evaluated. In addi-
tion, combinations of production control
were employed in bucking, log sorting,
and log breakdown with the target set to
produce a given volume share of four
specific products. In total, 28 simula-
tions were carried out (Table 1). The re-
sults that were monitored were value and
volume recovery and how well the tar-
geted volume share of the four products
was met. Results were further evaluated
using partial least squares regression
(PLS) (Geladi and Kowalski 1986).

Wood raw material
The wood raw material was a database

consisting of 48 young Scots pine
(Pinus sylvestris L.) stems with detailed
descriptions in parametrical form col-
lected from real trees. The diameter at
breast height of the sampled stems
ranged from 126 mm to 234 mm with an
average of 161 mm and their heights
ranged from 990 cm to 1603 cm with an
average of 1328 cm. After felling, the
trees were manually bucked and limbed.
The sawlogs were transported to Luleå
University of Technology where they
were scanned in a CT scanner. Through
image analysis of the obtained CT im-
ages, the outer shape and the internal
knot structure of the logs were extracted.
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Table 1. — Study set-up: combinations of bucking, log sorting, and production control.

Production control

Simulation Bucking Log sorting Bucking Log sorting Breakdown

1 Manual 3D No No No

2 Manual 3D No Yes Yes

3 Manual CT No No No

4 Manual CT No Yes Yes

5 Manual Diameter No No No

6 Manual Diameter No Yes Yes

7 2D 3D No No No

8 2D 3D Yes Yes Yes

9 2D CT Yes Yes Yes

10 2D CT No No No

11 2D Diameter Yes No No

12 2D Diameter Yes No Yes

13 2D Diameter No No No

14 2D8 3D Yes Yes Yes

15 2D8 3D No No No

16 2D8 CT Yes Yes Yes

17 2D8 CT No No No

18 2D8 Diameter Yes No No

19 2D8 Diameter Yes No Yes

20 2D8 Diameter No No No

21 3D 3D No No No

22 3D 3D Yes Yes Yes

23 3D CT No No No

24 3D Diameter No No No

25 CT 3D No No No

26 CT CT No No No

27 CT CT Yes Yes Yes

28 CT Diameter No No No



The format of the parametric descrip-
tions is in concordance with the previ-
ously established Swedish Pine Stem
Bank (Grundberg et al. 1995). During
the whole process from the felling of the
trees to the final database, great care
was taken in order to allow for a correct
reconstruction of the stems from the logs.

A validation of the parametric descrip-
tions against real boards, sawn from three
of the logs after CT scanning, showed
that the number of knots and their posi-
tions were well described, as well as the
log geometry, while the sizes of the knots
had relatively large errors at positions
close to the pith (Nordmark 2003). Al-
though the descriptions deviate to some
extent from the logs they were derived
from, it was concluded that they could be
used for simulating the yield of sawing.

Sawing simulator
The sawing simulator used (Nordmark

2002) is a Windows™-based program
developed in C++ with a graphical inter-
face partly based on Open GL, allowing
the user to view and interact with logs
and boards in three dimensions. The
software is capable of reading logs from
the database and optionally assembling
logs into stems for bucking into other
lengths.

The sawmill modeled uses cant saw-
ing, where the first sawing machine cuts
the log into a block and side boards,
while the second sawing machine cuts
the block into two to four center boards
and two to four side boards. Side boards
are edged and trimmed, while trimming
is the only operation on center boards.
Both edging and trimming are value-op-
timizing operations based on lumber
prices and grade. Grading is based on
wane criteria and knot properties. The
simulator also exposes a great deal of its
functionality to a scripting module.
Through scripts, simulations can be au-
tomated, and reports of the sawing pro-
cess and properties of logs and boards
can be tailored. The sawmill simulation
software’s ability to correctly predict

wane and knot properties on boards
from the database was validated in an
earlier study (Nordmark 2003). In this
study, logs were automatically rotated
horns down (crook up), centered in both
saws, and curve sawn. A minimum trim-
ming of 50 mm at each board end was
applied. The boards were graded A, B,
or C following the Nordic Timber
Grading Rules (Anon. 1994) where A is
the highest grade. The grading rules de-
fine allowed wane, and the rules also
state limits on knot diameter and sum of
knot diameters on edges and faces for
sound and dead knots, respectively. The
boards were priced according to Table 2.
A price penalty related to board length
was introduced to account for produc-
tion costs related to length. The relative
value was set to 100 percent for length
class 5400 mm and reduced in steps of 2
percent for each length decrement of
300 mm down to a relative value of 76
percent for length class 1800 mm. With-
out such price deduction, it is likely that
most logs will be cut to minimum length
due to log taper and volume yield rela-
tionship. No other costs were consid-
ered. By-products were given the price
200 SEK/m3.

Bucking

The bucking patterns of the stems were
value optimized using dynamic pro-
gramming, with the exception of one
manual alternative where the crosscuts
were arbitrarily chosen. The discretation
was 100 mm, meaning that crosscut po-
sitions were evaluated every 100 mm
along the stems. Five bucking alterna-
tives were evaluated:

Manual. — This is how the original
logs were cut in reality when they were
sampled from the forests. Logs were cut
with lengths between 3100 mm and 5500
mm with a 300-mm length module. No
optimizing calculations were done.

2D. — This is a value-optimizing
bucking where the value is given by a log
price list with individual prices for dif-
ferent combinations of log small-end di-
ameter and log length. Diameters of the
stems were derived from the stems’
cross-section areas with the interval 10
mm lengthwise. The diameter profile of
each stem was then filtered so that no in-
creases in diameter were allowed in the
direction from the butt end towards the
top. The stem feature array passed to the
bucking algorithm was the diameter pro-
file along the length of the stem without

any information on out of roundness or
crooks, hence 2D.

2D8. — This alternative follows the
method of 2D, but with an error added to
the diameter profile in order to simulate
the accuracy of a harvester-based buck-
ing system (Möller and Sondell 2000).
Each stem was given a random error on
the diameter with a normal distribution
of N(0, 2) with the standard deviation
set to 8 mm.

3D. — The full 3-D profile of the
stems was used. Prospective logs as seg-
ments of the stem were passed to the
sawmill simulator, which simulated the
breakdown and outcome of products.
The returned estimated value was used
to price the logs; i.e., no log price list
was used. As no knot parameters were
passed, the optimization approaches max-
imization of volume recovery.

CT. — Like 3D, but in addition to the
full 3-D-profile, the interior knot struc-
ture of the stem is known. Thus, the
bucking is truly value optimized.

The log price list used in the 2D and
2D8 bucking cases (Table 3) was com-
piled from the results of an optimized
bucking and log sorting, i.e., the CT
bucking/CT log sorting case.

Log sorting

In this study, the meaning of log sort-
ing is restricted to determination of the
appropriate breakdown pattern for indi-
vidual logs. Three alternatives in log sort-
ing were evaluated:

Diameter. — Based on the log’s small-
end diameter, the breakdown pattern is
given by a look-up table (Table 4).

3D. — The full 3-D profile of the logs
was used for simulated sawing. Two or
three sawing patterns were evaluated for
each log: the normal pattern given by the
look-up table and the patterns with di-
ameter intervals above and below. For
the smallest logs, only the pattern with
a diameter interval above was added.
The pattern giving the highest value in
the simulated sawing was chosen. No
knot parameters were passed to the sim-
ulated breakdown, so the optimization
approaches maximization of volume
recovery.

CT. — As 3D, but in addition to the
full 3-D profile, the interior knot struc-
ture of the logs is known. Thus the log
sorting is truly value optimized.
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Table 2. — Timber price list used.

Price by board type

Grade Side boards Center boards

- - - - - - - (SEK/m3)a - - - - - -

A 3000 1850

B 1400 1600

C 1100 1000
aSEK = Swedish krona.



Production control
Production control was implemented

by an algorithm continuously adjusting
the prices of the controlled boards and,
in the case of 2D bucking, the price of
corresponding log dimensions (Eq. [1]).
When the desired share of a particular
product is lower than the target share,
and the share is decreasing, the product
price is raised. If the target share is
higher than desired, and the share is in-
creasing, the price is lowered. Whenever
the share is moving towards the target,
the price remains.

Equation [1]: Production control al-
gorithm:

ds Sp Sp
dt So Sp

c u Dm
dt

So

n n i n i

n n n i

n

n

n

, ,

,

1

Dm c Dm
C C c

Dm C Dm
Pc P C

n i n i n

n n

, ,1

1 1

[1]

where:

ds = change of share (‰)

i = stem being processed

n = product under control

dt = deviation from
target (‰)

Sp = share produced (‰)

So = share ordered (‰)

c = change of coefficient

Dm = allowed deviation of
price coefficient (%)

= step control parameter

u =
1 0

0

, ( )

,

if

otherwise

ds dt

C = price coefficient

Pc = control price

P = selling price
In this study, maximum price devia-

tion (Dm) was set to 50 percent, and the
step control parameter ( ) was set to 0.1.
Price coefficients (C) were initialized to
100 percent and volume share produced
was initialized to 0. Recovered volumes

and coefficients were updated after each
processed stem. The list of controlled
products is given in Table 5. Log dimen-
sions corresponding to the controlled
center boards are shown in Table 6. The
dynamic prices of boards and logs (Pc)
were only used for controlling the pro-
duction. In the summation of values pre-
sented, all boards were priced according
to Table 2.

A measure of how well the target
shares of the controlled products were
met is given by Equation [2]. The mea-
sure is further referred to as the appor-
tionment degree. The interpretation is
that the better the orders are met the
closer to 1000‰ will the apportionment
degree be. Any deviation from the target
will give a lower value.

Equation [2]: Definition of apportion-
ment degree:

Apportionment degree =

1
=1

So Spn n
n

N

[2]

where:
N = number of controlled products
In order to allow for the production

control parameters to stabilize, the set of
48 stems was run in two consecutive
runs without resetting the parameters in
between in all simulations.

Partial least squares
Partial Least Squares (PLS) regres-

sion was chosen because it is based on
the assumptions that the x-variables are
correlated, that there is noise in the data,
and that there can be structures in the re-
siduals (Lindgren 1994). Because of this,
PLS regression was well suited to this
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Table 3. — Log price list used in 2D bucking.

Log small-end diameter

Length 100 mm 130 mm 150 mm 170 mm 185 mm 195 mm 210 mm 220 mm 230 mm 250 mm

(mm) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (SEK/volume by top measurement) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2200 630 699 736 768 791 804 824 836 847 869

2500 682 756 796 831 856 870 891 904 917 940

2800 734 813 856 894 920 936 959 973 986 1011

3100 775 859 905 945 972 989 1013 1028 1042 1068

3400 827 916 965 1008 1037 1055 1080 1096 1112 1140

3700 858 951 1001 1045 1076 1094 1121 1137 1153 1182

4000 889 985 1038 1083 1115 1134 1161 1179 1195 1225

4300 930 1031 1086 1134 1167 1187 1215 1233 1251 1282

4600 951 1054 1110 1159 1193 1213 1242 1261 1278 1311

4900 982 1088 1146 1197 1232 1253 1283 1302 1320 1353

5200 1013 1123 1182 1234 1271 1292 1323 1343 1362 1396

5500 1034 1146 1207 1260 1297 1319 1351 1371 1390 1425

Table 4. — Sawing patterns and related log small-end diameter intervals.

Log small-end diameter interval Sawing pattern

Minimum Maximum First saw Second saw

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (mm)  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

100 129 19,75,19 19,38,38,19

130 149 19,100,19 19,38,38,19

150 169 19,100,19 19,50,50,19

170 184 19,125,19 25,50,50,25

185 194 19,125,19 19,63,63,19

195 209 19,19,150,19,19 19,25,50,50,25,19

210 219 19,19,150,19,19 19,25,63,63,25,19

220 229 19,19,175,19,19 19,25,50,50,25,19



investigation, and the PLS analysis was
carried out using the software SIMCA-
10.0 (Anon. 2002). Coefficient of deter-
mination (r2) and a Q2 value based on
cross validation (Martens and Naes
1989a) were calculated. Q2 represents
the proportion of variance of y-values in
the test set that is explained by the model.
Hence Q2 is a measure of the model’s
ability to predict future observations,
i.e., observations that were not included
when building the model. A model that
explains random variations in the train-
ing set will fail when tested on new ob-
servations; hence Q2 will be low for such
a model (Martens and Naes 1989b). In
the analysis, dummy variables were used
to indicate the treatments engaged in
each simulation. A dummy variable was
given the value 1 if the treatment was
used in a simulation and given the value
0 if it was not.

Results
Value recovery and volume recovery

resulting from the simulations without
any production control are shown in Ta-
ble 7 and Table 8, respectively. Manual,
2D, and 2D8 bucking had low value re-
covery compared to 3D bucking. The
highest values were achieved with CT
bucking. Value recovery is also influ-
enced by the method of log sorting used.
The results rank Diameter log sorting as
giving the lowest values and CT log sort-
ing as giving the highest values. Further-
more, the bucking method is shown to
have greater influence on value recovery
than does log sorting. Volume recoveries
follow the same pattern in general, but
with a few exceptions. The relative dif-
ferences between treatments are smaller,
and Manual bucking gave higher vol-
ume recovery than 2D8, although value
recovery was lower.

Results of the simulations with pro-
duction control employed are shown in
Table 9. The apportionment degree was
on average 981±11‰ with production
control compared to 949±18‰ in the
simulations without production control.
The highest degrees of apportionment
were achieved with 2D and 2D8 buck-
ing. The degree of apportionment varied
less with the type of log sorting applied.
Value recovery and volume recovery
rank the combinations of bucking and
log sorting in the same order with pro-
duction control employed as with no pro-
duction control.

The PLS model was calibrated with
two principal components and with r2 =
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Table 5. — Order specification used in the production control studies.

Thickness Width Length Grades Desired share of board volume

- - - - - - - - - - - - - - (mm)  - - - - - - - - - - - - - - (‰)

19 75 2400 B, C 20

38 75 3000 A 20

38 100 3900 A, B 20

50 100 3300 B 20

Table 6. — Log tally specification used in the production control studies.

Log specification

Board dimension Small-end diameter Length Desired share of log volume

- - - - - - - - - - - - - - - - - - - - - (mm) - - - - - - - - - - - - - - - - - - - - - (‰)

19 by 75 by 2400 -- -- --

38 by 75 by 3000 100 to 129 3100 20

38 by 100 by 3900 130 to 149 4000 20

50 by 100 by 3300 150 to 169 3400 20

Figure 1. — PLS scatter plot. Y-variables are the modeled responses. AppDeg = ap-
portionment degree; Value = gross value of the products; Yield = volume yield.
X-variables are binary, indicating the presence of a treatment in the simulations.
ProdCtrl = production control; BuCtrl = production control in bucking; LsCtrl = pro-
duction control in log sorting; BdCtrl = production control in log breakdown; Bu2D8 =
bucking based on diameters with errors and a log price list; Bu2D = bucking based
on diameters and a log price list; Bu3D = bucking based on the stems’ full 3-D profile;
BuCT = bucking based on the stems’ full 3-D profile and interior knot structure;
LsDiam = log sorting based on the logs’ small-end diameters; Ls3D = log sorting
based on the logs’ full 3-D profile; LsCT = log sorting based on the logs’ full 3-D pro-
file and interior knot structure. Variables close to each other are positively corre-
lated. Projecting the x-variables to the line drawn from a y-variable through origin
gives the prediction coefficients of the scaled and centered x-variables (e.g., Bu3D)
for that y (e.g., Value, AppDeg), i.e., the relative importance of the predictors. In the
example, B3D is positively correlated to value but negatively correlated to the ap-
portionment degree.



0.76 and Q2 = 0.59. A plot of the weights
used to combine x-variables and y-vari-
ables (w*c) in the two components is
shown in Figure 1. Value and volume
recovery are strongly correlated to each
other, and the type of bucking applied
has a large influence, while the type
of log sorting has a somewhat smaller
influence on value and volume recov-
ery. Whenever production control is em-
ployed, indicated by the variable
ProdCtrl, volume and value are de-
creased. The more process stations in-
volved in production control (variables
BuCtrl, LsCtrl, and BdCtrl), the lower
the value and volume recovery, but the
apportionment degree increases. The
type of log sorting has low influence,

while the type of bucking has a moder-
ate influence on the apportionment de-
gree.

Discussion
First, it must be emphasized that this

study was based on a wood supply of a
limited origin both geographically and
biologically, and the results are dis-
cussed within this context. Furthermore,
if production costs had been included,
other results might have been achieved.
However, the results may serve as indi-
cators of relationships in a broader sense.

Simulating the process of converting
trees to lumber made it possible to com-
pare alternative ways of bucking and log
sorting while eliminating differences in

the raw material input between runs.
Simulating reality is a cost-efficient way
of screening for relationships, but the re-
lationships found should be verified in
reality before they are considered true.
However, no indications within the re-
sults arrived at in this study lead towards
the conclusion that the relationships
found are inconsistent with real-world
practice.

The bucking method had the greatest
influence on value and volume recovery.
In order to extract maximum value from
the wood raw material, bucking of stems
and sorting of logs into sawing patterns
must be based on knowledge of the
stem’s outer shape and a precise descrip-
tion of its knots. CT scanning of stems is
a future possibility to provide such in-
formation. It was included in this study
to provide a benchmark of the value po-
tential of the wood raw material. At the
other end of the spectrum is Manual
bucking, which is rare in practice due to
the mechanization of forest operations.
2D8 bucking with a log price list resem-
bles a harvester operating in the cut-to-
length system where diameters under
bark are predicted from measurements
over bark. This is the dominant practice
in Scandinavia. 2D bucking, i.e., correct
measurement of diameters under bark,
was included to make it possible to com-
pare the method of 2D bucking with
other methods without the effect of mea-
surement accuracy. 3D bucking without
errors was superior to 2D bucking with-
out errors in this study.

The log price list was compiled from
the results of an optimal processing in
bucking and log sorting. In practice, the
construction of log price lists is more
complicated and it is likely that the log
price list used in this study was more
correct than one would expect a log
price list used in reality to be. The de-
sired shares of the controlled products
were directly translated to shares of log
dimensions for production control in
2D/2D8 bucking. However, the volume
yield of boards varies with log dimen-
sion, and in order to make a correct ap-
portionment of logs to fit the targeted
products, this log/yield relationship
should preferably be accounted for.

The method of log sorting also influ-
ences value and volume recovery in the
way that the more information about the
logs that is processed, the better the per-
formance. The spread in value recovery
was lower in terms of the method of log
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Table 7. — Value recovery, no production control.

Bucking

Log sorting Manual 2D8 2D 3D CT All

- - - - - - - - - - - - - - - - - - - - - - - - - - (SEK) - - - - - - - - - - - - - - - - - - - - - - - - - -

Diameter 7931 7963 7986 8398 8771 8210

3D 8081 8116 8184 8496 8782 8332

CT 8167 8234 8299 8556 9088 8469

All 8060 8104 8157 8484 8880 8337

Table 8. — Volume recovery, no production control.

Bucking

Log sorting Manual 2D8 2D 3D CT All

- - - - - - - - - - - - - - - - - - - - - - - - - - (%) - - - - - - - - - - - - - - - - - - - - - - - - - -

Diameter 41.9 41.4 42.2 43.4 44.0 42.6

3D 42.2 42.0 42.4 44.0 43.5 42.8

CT 42.2 42.2 42.6 43.4 45.3 43.1

All 42.1 41.8 42.4 43.6 44.2 42.8

Table 9. — Simulation results with production control employed.

Production control

Simulation Bucking
Log

sorting Bucking
Log

sorting Breakdown
Vol.
yield Value

App.
degree

(%) (SEK) (‰)

2 Manual 3D No Yes Yes 41.8 7986 985

4 Manual CT No Yes Yes 42.0 8193 973

6 2D Diameter No Yes Yes 41.4 7836 965

8 2D 3D Yes Yes Yes 41.8 8084 988

9 2D CT Yes Yes Yes 42.2 8235 990

11 2D Diameter Yes No No 42.0 7946 975

12 2D Diameter Yes No Yes 41.7 7901 996

14 2D8 3D Yes Yes Yes 41.3 8030 990

16 2D8 CT Yes Yes Yes 41.6 8195 997

18 2D8 Diameter Yes No No 40.8 7828 964

19 2D8 Diameter Yes No Yes 41.3 7879 983

22 3D 3D Yes Yes Yes 44.0 8487 969

27 CT CT Yes Yes Yes 44.9 9039 977



sorting used than it was in terms of the
bucking method. This reflects thesitua-
tion that dimensions and knot properties
of a log to a large extent also determine
the dimensions and grades of the boards
sawn from it. Thus, the alternatives for
processing the logs originating from a
stem are fewer compared to the alterna-
tives available when the stem is being
bucked.

The purpose of including production
control was not to evaluate the algo-
rithm, but rather to investigate how dif-
ferent treatments in bucking, log sort-
ing, and log breakdown affect the degree
of apportionment. There may be better,
more efficient algorithms applicable, and
the applied algorithm could have been
better tuned. The obtained PLS model
showed that in order to achieve a high
apportionment degree it is almost equally
important to employ production control
in the process stages of bucking, log
sorting, and log breakdown. Further-
more, the model shows that all process
stages should be employed. At the start
of production, where the volume pro-
duced is low, the volume share of a con-
trolled product takes a large leap when-
ever such a product is produced. As a
consequence, the volume share and the
control price coefficient will oscillate
around the target until a large total vol-
ume has been produced. The limited
number of stems processed when evalu-
ating production control in the simula-
tions may have been insufficient for
avoiding that type of randomness in the
apportionment degree. 2D and 2D8
bucking had a positive effect on the ap-
portionment degree compared to 3D and
CT bucking. One reason may be the ran-
domness just mentioned. Another likely
reason is that the value of a log given by
a breakdown simulation is the sum of
the value of the products extracted from
it. A board with specified dimensions
and grade is only part of the summed
value. From this it follows that the value
of logs will be less sensitive to changes

of the controlled products price coeffi-
cients when predicted from a breakdown
simulation, compared to the case where
the log’s price coefficient is changed di-
rectly, as in the case of 2D bucking with
a log price list.

Using 3D optical scanners in combi-
nation with a log breakdown simulator
in bucking and log sorting makes it pos-
sible to extract high value from the wood
raw material. With the concept, log price
lists become obsolete, easing communi-
cation between different processing
stages. Until industrial CT scanning is
available, there are other possibilities for
implementing the inclusion of lumber
quality in bucking and sorting decisions.
The detailed model of the log mantel ob-
tained from 3D scanning can be used for
predicting the quality of the sawn goods
(Lundgren 2000). The two-way x-ray log
scanner is also applicable for predicting
board quality with high accuracy alone
(Grundberg and Grönlund 1997) or in
combination with an optical 3-D scan-
ner (Oja et al. 2003). Further studies
should focus on including quality pre-
dictions in bucking and log sorting deci-
sions and on validating the results pre-
sented here on a larger and more hetero-
geneous raw material.
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ABSTRACT 

There is an ongoing shift in production strategy in the sawmill industry in Scandinavia from bulk 
production of standard grades towards customer-oriented production of well-defined products. 
Satisfying a consumer’s need for special grades will have implications for the outcome of other 
products and perhaps for productivity as well. This makes it difficult to foresee the profitability 
of a business offer where a change in production is involved. We have estimated the outcome of 
products, productivity, value and economy in a scenario where a consumer asks for large volumes 
of the dimensions 50x100 mm, 50x125 mm and 50x150 mm, and with lengths of either 240 cm 
or 480 cm. In the scenario the sawmill buys a standing volume of Scots pine (Pinus sylvestris L.). 
This is represented by the logs in the Swedish Pine Stem Bank. Four different strategies of 
bucking operations were simulated, a reference strategy with varying lengths as found in real-
world practice, two with fixed lengths (255 cm and 495 cm resp.) and one with mixed fixed 
lengths (495+255 cm).

The product flow of a sawmill with an annual production capacity of 100,000 m3 was 
modeled and productivity, expressed as pieces per hour, was calculated for the average log 
lengths derived from the bucking operations. Using a virtual sawmill, the outcome of products in 
terms of volume and value were estimated. Putting it all together, the contribution per hour was 
calculated. From a timber input of 110 m3, the volume of the desired products ranged from 3.0 
m3 in the reference alternative up to 15.8 m3 in the mixed length alternative. The gross value of 
the produce was highest for the 255 cm alternative, but the same alternative had the lowest 
production rate. All in all, the highest profitability was achieved with the reference alternative, 
even with a 10% bonus on the price for the desired products. Although this was a limited study, 
we conclude that a holistic approach, as taken here, will be necessary for good decision making 
within the supply chain. Optimizing forest operations, value recovery and production as separate 
entities will not produce optimal results. 
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INTRODUCTION

There is an ongoing shift in production strategy in the sawmill industry in Scandinavia from bulk 
production of standard grades towards customer-oriented production of well-defined products. 
Satisfying a consumer’s need for special grades will have implications for the outcome of other 
products and perhaps on productivity as well. This makes it difficult to foresee the profitability of 
a business offer where a change in production is involved. The common strategy in Sweden of 
bucking trees into lengths gives a widely spread distribution of lengths, usually ranging from 31 
dm to 55 dm and width an average length of 46 dm. In a scenario, a consumer asks for large 
volumes of the dimensions 50x100 mm, 50x125 mm and 50x150 mm, and with lengths of either 
240 cm or 480 cm. Our hypothesis is that by length adapting the bucking to the consumer’s 
demand, the volume of the desired products can be increased as well as the total economy of the 
operations given a bonus on the price of the desired products. The objective of this study was to 
estimate the outcome of products, productivity, value and economy for different bucking 
strategies using simulation techniques. 

MATERIALS AND METHODS 

The Swedish Pine Stem Bank (SPSB) 

The Swedish Stem Bank (6) is a large database containing detailed information on 200 Scots pine 
(Pinus sylvestris  L.) trees. The project is based on computed tomography (CT) scanning of these 
200 stems, which were carefully chosen from 33 well-documented sample plots all over Sweden. 
From each sample plot six trees were taken: two small, two medium-sized and two large trees. 
After harvesting the selected trees, the logs obtained were CT-scanned in a fourth generation 
medical tomograph (Siemens SOMATOM AR.T.). The images achieved through CT scanning of 
logs were analyzed automatically using image analysis algorithms (4). These images describing the 
logs consist, however, of a large amount of information. In order to reduce the amount of data, a 
method for parameterization of the log has been developed (3). The parameter files issued 
describe the outer shape of the log and the heartwood border using polar coordinates having the 
pith as origin. One radius at every degree every 10 mm along the log describes the outer shape, 
whilst a mean radius for twelve degree sectors every 10 mm along the log describes the 
heartwood border. The location of the pith is given every 10 mm along the log using an X-Y 
reference system. The description of every knot (location, size and type) is made by using 11 
parameters acquired from CT images by semiautomatic image-processing algorithms.  

The virtual SawMill (vSM)

The virtual SawMill is sawing simulation software that is able to utilize the digitized logs acquired 
from CT scanning and stored in the SPSB. The program is capable of reconstructing a 3-D 
representation of the outer shape and the internal structure of the log and of generating boards 
through a sawing procedure that is easily controlled by the operator. When generating boards, 
vSM can identify internal and external defects such as knots and wane. The grading procedure is 
based on explicit grading rules (1) and the value for each generated board is determined. Once 
the sawing procedure is completed, a detailed sawing report is available. A previous study has 
successfully dealt with the validation of the vSM at the single log level (5) and even a large-scale 
validation approach of the vSM along with the Swedish Pine Stem Bank has been carried out 
versus a real sawmill yield (2). 

The virtual SawMill reads the logs from a Stem Bank CD/ROM and automatically creates 
an internal database from which different log selections can be made. The user interface allows 
not only the 3-D visualization of the log, but also allows the visualization of diverse sorts of 
sawing parameters. A main feature of the code is its "open architecture": the vSM is endowed 
with a particular programming aid (WoodScript) which allows users to adjust the program 
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according to their specific needs. If, for instance, only the outer shape of the log is in focus, the 
knot structure can be easily removed and different hypotheses can be tested in a nondestructive 
environment through sawing simulation. Wane criteria adjustment or automatic batch sawing 
mode are some other facilities that vSM offers.

Extend

Extend is software designed for simulating material flow in a process. Buffers and interruptions 
can be modeled, as well as diverging and merging of flows along with processing times of 
different operations. A medium-sized sawmill with a production of 100,000 m3 was previously 
modeled (7). The model incorporates operations from sawing to trimming and has been validated 
versus a real sawmill.

Simulation approach 

The original stems were reconstructed from the parametric descriptions of the logs in the 
Swedish Pine Stem Bank. The stems were then bucked according to three different strategies in 
addition to the original one, and new versions of the stem bank were formed. The targeted 
lengths of the timbers were 240 cm and 480 cm. With a trimming allowance of 10 cm and an 
extra 5 cm due to the harvester’s measurement inaccuracy, the targeted log lengths were 255 cm 
and 495 cm. The bucking strategies chosen are shown in Table 1. 

Table 1. Bucking strategies evaluated. 

Strategy Explanation 
Reference Normal bucking (SPSB) 
255 cm Fixed lengths of 255 cm from the butt end upwards and with a residual top 

log shorter than 255 cm 
495 cm Fixed lengths of 495 cm from the butt end upwards and with a residual top 

log shorter than 495 cm 
495+255 cm Fixed lengths of 495 cm from the butt end upwards as far as possible, then a 

255 cm log and a residual top log shorter than 255 cm 

The properties of the four cases are shown in Table 2. The total volume in the SPSB was 
110.04 m3. The volume used was lower in the alternatives with fixed lengths. This is because 
some of the residual top logs fall below the minimum length of 185 cm.  

Table 2. Properties of wood raw material for the bucking strategies. 

Strategy
Used volume 
 (m3)

Average diam
(mm)

Average length 
 (cm) Number of logs 

Ref. 110.0 196.1 445.94 627 
255 cm 107.0 209.2 253.21 1046 
495 cm 109.0 194.5 455.23 605 
495+255 cm 106.9 196.3 422.16 626 

The sawing operation was simulated with the vSM. The same sawing pattern and same 
price list were used in all cases, and the boards were graded according to the Nordic Timber 
Grading Rules. Byproducts, including residual top logs shorter than 185 cm, saw dust and chips, 
were priced at 186 SEK/m3. It was assumed that it is possible to get a higher price for the desired 
products if large quantities can be offered. Hence, the desired products were given a 10% price 
bonus.
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The Extend model of a sawmill was used to assess the productivity of the different 
strategies by simulation. Simulations were made with the different average log lengths keeping all 
other parameters constant.  

The contribution per hour was calculated for each of the alternative bucking strategies. A 
raw material cost of 650 SEK/m3 was assumed. The calculations were based on a 10% bonus on 
the desired products.  

RESULTS

The volume of the desired products was substantially increased with the fixed length alternatives 
(Fig. 1). The volume increased from 3.0 m3 in the reference alternative to 15.8 m3 in 495+255 
alternative.
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Fig. 1. Volumes of the desired products. 

The quality outcome was best with the 255 cm alternative, while the other alternatives all 
had similar distributions (Fig. 2).
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Fig. 2. Distribution of board grades, (1 = high grade, 3 = low grade). 

The value of the products, including byproducts, was highest in the 255 cm alternative, 
with the reference alternative almost as high (Table 3). The 495+255 cm alternative had the 
lowest value . With the value expressed per volume of raw material input, the difference between 
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the 255 cm alternative and the reference was 1 SEK/m3. With a 10% bonus on the desired 
products, the difference increased with 15 SEK/m3.

Table 3. Values of boards and byproducts. 

Alternative Value boards 
(SEK)

Value by-prod. 
(SEK)

Total value 
(SEK)

Total value 
(SEK· m-3)

Ref. 102 351 10 112 112 463 1022.00 
255 cm 102 525 10 054 112 580 1023.07 
495 cm 98 408 10 224 108 632 987.19 
495+255 cm 96 692 10 443 107 135 973.59 
     
Ref.+ 10% bonus  102 767 10 112 112 879 1025.80 
255 cm + 10% bonus  104 589 10 054 114 643 1041.83 
495 cm + 10% bonus  100 232 10 224 110 455 1003.77 
495+255 cm + 10% bonus 98 765 10 443 109 208 992.44 

The productivity analysis gave the highest piecewise flow with the 255 cm alternative and 
the lowest flow with the 495 cm alternative (Table 4). Recalculated to flow of volume of raw 
material, the highest flow was with the 495+255 cm alternative. The bottleneck was the trimmer 
in the 255 cm alternative, while it was the saw in the other alternatives. 

Table 4. Flow of boards and raw material. 

Alternative
Flow,
(pieces·h-1)

Flow
(m3·h-1)

Ref. 2 436 57.1 
255 cm 3 426 46.1 
495 cm 2 274 55.9 
495+255 cm 2 598 61.7 

The contribution per hour from each alternative is shown in Fig. 3. The reference 
alternative gave the highest contribution, while the 255 cm alternative gave the lowest.
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DISCUSSION 

A quite important part of this study involved the simulation technique. Simulating reality is a very 
efficient, economical and interesting approach when complex situations are to be studied. In this 
study, different proposed strategies for satisfying a consumer’s need for certain products could be 
evaluated in a cost-efficient way. Doing such things as trials at a sawmill would be very time-
consuming and would require great effort to get comparable results between the different set-
ups.

In the fixed-length bucking strategies, all logs were cut to the same length without regard to 
diameter at the top end. Since the desired dimensions usually are sawn from an interval of 
diameters, approx. 155 mm – 225 mm, there is no point in cutting logs with other diameters at 
fixed lengths. A better bucking strategy would have been to optimize the bucking by maximizing 
the value given by a log price list where the sought-after combinations of length and diameter 
were given a higher price than other combinations. It is likely that the volume of the desired 
products would increase, as well as the proportion of the raw material utilized, which would 
result in a higher contribution from the length-adapted alternatives.   

The results of the simulated sawing gave the highest value from the 255 cm alternative. 
This alternative would have been chosen if the objective was to maximize the value obtained 
from a given wood supply. More high-quality boards, along with a high yield of products with a 
bonus on the price, out balanced the low utilization of raw material. A likely cause of the high 
quality is that the probability of a board containing sections with low quality increases with 
increased length. Since the grade of a board is determined by its worst section, longer boards will 
be more likely to receive a lower grade. The same alternative (255 cm) had the highest 
productivity on a piece-per-hour basis. This is a poor criterion for selection of strategy. A better 
measure of productivity is volume per hour. Based on volume per hour, one would have chosen 
the 495+255 cm alternative. However, only when the value is combined with the production rate, 
forming a measure of contribution per hour, does one have the appropriate criteria for evaluating 
different strategies and picking the most profitable one. 

CONCLUSION

Although this was a limited study, we conclude that a holistic approach, as taken here, will be 
necessary for good decision making within the supply chain. By using simulation techniques it is 
possible to foresee the outcome of different operations along the production line and thus avoid 
expensive surprises. Optimizing forest operations, value recovery and production as separate 
entities will not produce optimal results.
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ABSTRACT
This work is a study of a softwood sawmill in Sweden where the length of the lumber is of 
current interest. This paper discusses the length dimension with respect to bucking, log sorting 
and log breakdown typical of Scandinavian practice—cut-to-length harvesting system, presorting 
of logs and batch conversion using cant sawing. Twenty-four thousand five hundred and five 
(24,505) virtual Scots pine (Pinus sylvestris) sawlogs were used as input to a sawmill simulator. The 
simulator was set up to model the studied sawmill with respect to machinery, product prices, 
processing costs and positioning error of the logs within the first saw. The results were post-
processed to account for measurement error in the log sorting station. A Linear Programming 
(LP) model was used to maximize the economic contribution from the sawmill’s actual log supply 
with constraints on the products produced. Finally, bucking simulations were used to find a set of 
log prices that will produce the desired log length distribution when used to control the 
harvesters’ bucking operation. By using realistic log geometries and by accounting for 
imperfections in the process, we were able to model the mismatch between log length and board 
length for smaller dimension lumber. Optimizations carried out indicate that the contribution can 
be increased by 2.4% with current log distribution. In order to meet demand, the log length 
distribution has to be altered, but this will also allow for an increase in contribution by 6.1%. 
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INTRODUCTION 
The process of converting trees to lumber with grades and dimensions defined by the customers’ 
needs is a chain of closely linked operations. One aspect of customers’ needs that is receiving 
increased interest is the length of the lumber. That is, customers also want specific lengths aside 
from thickness, width and quality of the boards. Historically and to some extent yet ongoing, a 
wide distribution of lengths has been produced, and the lumber has been sold with varying 
lengths in a package. This paper discusses the length dimension of the lumber with respect to 
bucking, log sorting and log breakdown according to Scandinavian practice with the cut-to-length 
harvesting system, presorting of logs and batch conversion using cant sawing. 

At an early stage of the process, the bucking operation occurs. In Scandinavia, bucking is 
typically done at the harvesting site. The dimensions of a particular log (i.e., length and small-end 
diameter) place upper limits on the length, width and thickness of the lumber that can be sawn 
from it. While shorter and smaller lumber dimensions can be sawn from the same log, 
production economy will suffer as the volume yield drops. 

The second step in the conversion chain determining the dimensions of the lumber is the 
assignment of breakdown patterns to the logs, either in a log sorting station for batch processing 
or in line with the breakdown machinery. In Sweden, almost 95% of the sawmills practice 
presorting of logs. At the log sorting station, logs are sorted into bins representing different 
sawing patterns for batch processing. In its simplest form of sorting, the small-end diameter of 
the log is matched with a look-up table. In the look-up table, each bin has an interval of log 
diameters that are accepted. Defining these intervals has a large impact on the profitability of a 
sawmill. As an aid in deciding the sorting limits, software that simulates the conversion of logs to 
lumber can be used. Using cant sawing, each log yields 2–4 center boards. After drying, the 
boards are trimmed to their final length, and the operation ensures that each piece has an 
acceptable quality with respect to checks, wane, knots and other features. 

In order to efficiently produce boards with desired thickness, width and length in desired 
quantities we need the ability to predict the outcome of boards from different log dimensions 
and link this via the bucking operation to the available forest resources in an optimizing model. 
The target of such an optimization would then be to minimize raw material consumption while 
fulfilling production needs, or preferably the target would be to maximize profit. Linear 
Programming (LP) (Hillier & Lieberman 1995) is a widely used tool for allocating limited 
resources among competing activities in the best possible way. Sampson and Fasick (1970) used 
LP to allocate logs to competing conversion stations within a single mill facility. Maness & 
Adams (1991) combined LP so as to optimize sawing patterns with dynamic programming (DP) 
(Dreyfus & Law 1977), optimizing the bucking patterns and thus allowing for an integrated 
approach to optimizing the forest–wood chain. While LP and DP optimizing technologies are 
interesting in themselves, the usefulness of the derived results relies heavily on how well the 
underlying activities and processes have been modelled. In earlier research where the log 
breakdown was integrated into the bucking problem (Faaland and Briggs 1984; Reinders and 
Hendriks 1989; Maness and Adams 1991), simplified log geometry models free from defects were 
used. The bucking and sawing model described by Faaland and Briggs (1984) operates on a single 
stem at a time, while Maness and Adams (1991) focused on the log allocation problem where 
sawmill production was optimized on a weekly basis. Maness and Adams (1991) also accounted 
for inelastic demand by controlling price/volume relationships. Nordmark (2005) used realistic 
stem geometries in a combined log bucking and log breakdown model that continuously 
controlled production by adjusting control prices of the products. In order to correctly model the 
log breakdown process it is important to consider measurement errors as well as errors in 
machinery (van Wyk, 2001) or otherwise the yield will be overestimated. 

This work is a case study of a large sawmill in northern Sweden where the length of the 
lumber is of immediate interest. In order to meet market demands for particular lengths of 
lumber, the sawmill and the company supplying the logs have agreed upon a desired length 
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distribution of the logs and have succeeded fairly well in producing such logs. The desired log 
lengths have a length offset of 150 mm to accommodate a total trimming allowance of 100 mm 
and the harvesters’ length measurement error. However, the length distribution of the lumber 
produced deviates from the length distribution of the logs; e.g., a log class with lengths in the 
interval 4300 mm to 4600 mm sawn to the dimensions 38 x 100 yields a surprisingly low share of 
board volume with the desired length 4200 mm. The first question that arises is why this 
happens. Secondly, how can it be dealt with? The aim of this study was to develop a model that 
explains the mechanisms behind this behavior and to use the model to optimize the process of 
converting trees to lumber by improved log sorting and bucking using static demand profiles. 

MATERIAL AND METHODS 
The study was approached using simulation techniques. A database of 246 well-described unique 
softwood stems served as the wood supply, and a sawmill simulator able to read and process the 
stems was used to predict the outcome of the sawing process. Segments of the stems with 
varying lengths and at different positions within the stems were used to create a large number of 
logs representing all combinations of log length and small-end diameter (SED). The simulator 
was set up to model the studied sawmill with respect to machinery, product prices, processing 
costs and positioning error of the logs within the first saw. Each log was sawn with several 
sawing patterns, and the results were postprocessed to account for measurement error in the log 
sorting station. The compiled results were then used in a Linear Programming (LP) model 
capable of maximizing the profit from the sawmill’s log supply with constraints on the products 
produced and available logs. Finally, bucking simulations were used on a virtual stand, compiled 
from forest inventory data, to find a set of log prices that would produce the desired log length 
distribution when used to control the harvesters’ bucking operation.

Sawmill studied 

The sawmill studied produces 280,000 m3 of sawn goods annually, and it uses 650,000 m3 of 
Scots pine logs as input to the process. The logs are presorted into log classes by small-end 
diameter, which is derived from measurements of the logs’ outer shape. The sawmill operates 
two sawing lines, each consuming half of the log volume. One sawing line processes logs with 
small diameters. It is a high-speed circular saw where no sideboards are produced. The other line, 
which processes larger logs, is a band saw where sideboards usually are extracted. Side boards 
from the band saw are edged. All boards are kiln-dried either in batch kilns or in progressive kilns 
to moisture contents between 8% and 18%. The dried boards are graded and trimmed to their 
final lengths. The minimum board length is 1800 mm, and the maximum length is 5400 mm. In 
between, the boards are typically cut with a 300 mm module giving 13 lengths. A small 
proportion of the boards are freely cut within the minimum and maximum length limits.

Wood supply 

The wood raw material used for simulations was 198 Scots pine (Pinus sylvestris L.) stems from the 
Swedish Pine Stem Bank (SPSB) (Grundberg et al. 1995) and an additional set of 48 young Scots 
pine stems (Nordmark 2003). The representativeness of the SPSB has been verified by Chiorescu 
& Grönlund, 2000. The 3-dimensional outer shapes of the stems are stored in files that can be 
read and processed by a computer. Sections of the stems were then used to create logs 
representing all combinations of small-end diameter and length. The creation of logs from a stem 
starts with setting the first cut position of the log small end at a distance from the stem’s butt end 
equal to the minimum log length (3100 mm). Only one log is cut at this position. The cutting 
position of the small end is then moved 500 mm towards top of stem. Keeping the small end 
fixed at this new position, all log lengths feasible within the section down to the stem’s butt end 
are then cut, and the procedure is repeated until the small-end position is less than 500 mm from 
the top of the stem. In total, 24,505 logs were created with small-end diameters ranging from 113 
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mm to 301 mm. Nine different lengths were cut, from 3100 mm to 5500 mm, with 300 mm 
increments, thus adding a 100 mm trimming allowance to the target lengths of the boards. The 
large number of logs ensured that each combination of diameter and length was represented by 
several logs from different stems. The log volume distribution by diameter and length delivered 
to the sawmill during year 2004 was used to set the available volume of logs in each diameter and 
length combination as a constraint when the process was optimized.  

Sawing simulation 

The sawing simulator used (Nordmark 2002) is a Windows™-based program developed in C++ 
with a graphical interface partly based on Open GL, allowing the user to view and interact with 
logs and boards in three dimensions. The simulator also exposes a great deal of its functionality 
to a scripting module. Through scripts, simulations can be automated, and reports on the sawing 
process and properties of logs and boards can be tailored. The actual sawmill was modeled as 
accurately as possible. Properties of the sawmill process modeled were breakdown patterns, saw 
kerfs, sawing allowances, drying allowances, positioning error in first saws, edging and trimming 
practices. Cost functions were integrated into the simulations, giving the cost of processing a log. 
Together with the value of the produced boards and by-products, the contribution of every log 
type with every breakdown pattern applicable was calculated. Each log was sawn with the 
breakdown pattern given by a look-up table (Table 1) and the two patterns above and the two 
patterns below, if available. Grading of boards was done with respect to wane only, following the 
rules for wane in the Nordic Timber Grading Rules for grade A (Anon. 1994). Allowed wane 
depth on each edge was 3 mm + 10% of board thickness. Allowed wane width on the outside 
face was 10 mm, independent of board width. The decision not to include other quality features 
was partly due to the difficulty of modeling the large number of customer adapted grades and 
partly based on the desire to focus on the geometric aspects of the problem. Special attention was 
directed towards those activities that affect final lengths of the boards in order to get a reliable 
estimate of the lengths produced. The activities recognized and dealt with were the log 
geometries used in the simulation, the positioning error at the first saw and measurement errors 
at the log sorting station. First, irregularities affecting the yield, such as crook and out of 
roundness, are accounted for by using realistic log geometries. Second, the irregular shapes of 
logs together with the inaccuracies of the machinery are known to influence the positioning of 
the logs with respect to the saw blade’s cutting line; i.e., the log is offset from the centered 
position. An offset of the log increases the probability of getting wane on the center boards, 
which in turn may require extra trimming of the boards, reducing their length. Offsets in the first 
saw, where the faces of the cant are opened, affect both the lower and upper center board, 
whereas offsets in the second saw usually only affect one center board. A parallel offset in the 
first saw was simulated with a standard deviation ( ) of 4.0 mm. Each log was sawn with the 
same pattern at nine offsets from -2  to +2  with a step of 0.5 . The result at each offset was 
given a weight coefficient (Table 2) derived from the normal distribution frequency function (Eq. 
[1]) and normalized so that the sum of weights equals 1.0. The consequence of this procedure is 
that a log in combination with a sawing pattern with two center boards yields 18 center boards 
that are individually trimmed. The weighted sums of the boards, costs, byproducts, etc. were then 
used when calculating the contribution and yield of that log. 

Equation [1]: Normal distribution frequency function 
22 2

2

1 /)(
)(

xexf

where
 μ = average 
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Table 1. Sawing patterns and related log small-end diameter intervals. 

Log small-end 
diameter interval Sawing pattern 

No. Min. Max. Saw line First saw Second saw 
 -(mm)-  -(mm)- 
1 114 125 1 75 38,38 
2 126 142 1 100 38,38 
3 143 160 1 100 50,50 
4 161 171 1 115 50,50 
5 172 182 2 125 19,50,50,19 
6 183 195 2 19,125,19 25,50,50,25 
7 196 206 2 150 25,50,50,25 
8 207 214 2 19,150,19 25,50,50,25 
9 215 228 2 19,150,19 25,63,63,25 
10 229 236 2 25,150,25 19,75,75,19 
11 237 247 2 25,150,25 25,75,75,25 
12 237 247 2 19,175,19 25,63,63,25 
13 248 260 2 200 25,50,50,25 
14 261 267 2 19,200,19 19,25,63,63,25,19 
15 268 300 2 25,200,25 19,25,75,75,25,19 

The third activity dealt with was the log sorting measurement error. Any given log used in 
simulating the breakdown and predicting the outcome is considered to have an exact description 
of its geometry and hence an exact measure of its diameter. However, the diameter measured at 
the log sorting station will have an error added. Modern measuring devices use laser point 
triangulation. Measurements are made on bark, and functions are used to predict the double bark 
thickness (Zacco 1974), which is subtracted from the measured diameters. Variations in bark 
thickness and missing bark on parts of the log surface result in errors in the estimated diameters 
under bark. Evaluation of several 3D log scanners at sawmills resulted in an estimation that the 
error in a well-calibrated measuring device will have a normal distribution N(0, ), with  being 
3.5 mm (Grundberg et al. 2001) including the inaccuracies of the devices. The error limits the 
possibility of sorting the logs into correct log classes when the classes are separated by log 
diameter. The solution used to account for the error was to post-process the results with a 1-D 
Gaussian filter. The initial results were aggregated into log classes separated by small-end 
diameter and log length. Weight coefficients were calculated in analogy to the procedure used 
with the positioning error. The coefficients were then used to calculate a filtered value at each log 
class as the weighted sum of the results in the neighboring log classes with the same length but a 
different diameter. The width of the filter was ±2 . An example of the interpretation of the 
procedure is that a log class measured to 170–171 mm will consist of logs with actual diameters 
between 163 mm and 177 mm, and the result of sawing that class with a specific sawing pattern is 
the weighted sum of sawing the actual logs in that class. 
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Table 2. Weight coefficients used when simulating positioning errors in first saw and measurement errors in log 
sorting.

Deviation Weight 
-2.0 0.028
-1.5 0.066
-1.0 0.124
-0.5 0.180

0 0.204
0.5 0.180
1.0 0.124
1.5 0.066
2.0 0.028

Optimization

In this study, an LP software package was used which adds on to and is well integrated into the 
Microsoft Excel spreadsheet. The software was Frontline Systems Premium Solver Platform v. 5. 
With the high-level interface brought by the software, setting up and solving the LP problem was 
quick and easy. This has made it possible to focus the study on obtaining a realistic model of the 
sawmilling process to populate the LP problem with. The objective function maximized was the 
contribution, i.e., the gross value of the products minus the processing costs and excluding the 
cost of purchasing the logs, which translates to maximizing the profit from the given wood 
supply. Alternatives where the objective function was maximum volume yield were also 
evaluated. Variables were log volume in the 3-dimensional matrix of log diameter, log length and 
sawing pattern. Assigning a volume of logs to a cell in that matrix yields its own set of products, 
and the objective function is calculated as the summed yield of all cells. The LP algorithm finds 
the optimal distribution log volumes in all cells under constraints. Constraints were set on 
minimum and maximum volume of the boards specified by thickness, width and length. 
Constraints were also set on volume used in each log class, defined by small-end diameter and log 
length, which had to be less than or equal to the supply in that class. In a second step, the 
constraints on the log classes were relaxed by only constraining the volume by small-end 
diameter and not by length. The LP software used was limited to 2000 variables. In order to fit 
the problem within the limit, the number of log classes was reduced by aggregating the results 
into 2-mm-wide small-end diameter intervals. However, further reduction of the number of 
combinations of log diameter, log length and sawing pattern was necessary. In each log class 
there are four to five alternative sawing patterns. Comparing the net values of each pattern with 
the pattern giving the highest net gives a calculated optimality loss. By discarding variables with 
an optimality loss worse than a threshold of 100 SEK, the number of variables was decreased to 
1989.

Bucking simulation 

Based on results of the optimizations, a log length distribution was manually selected as a target 
for the bucking. The criterion used was that it would be practically feasible considering the 
harvesters’ diameter-measuring error, which has been estimated to have a standard deviation of 8 
mm on Scots pine (Möller & Sondell 2000). Data from preharvest inventories of final fellings in 
the sawmill’s catchment area were used to compile a virtual stand which was used as input to the 
bucking simulations carried out. The breast height diameter (DBH) distribution was based on 
measurements on 33,700 Scots pine trees from 448 stands. 5300 trees were measured by both 
height and DBH. The diameter distribution along with the height relationship (Fig. 1) was used 
to create a virtual stand of 1400 trees with different DBH and height and with weights on their 
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respective representation. A segmented stem taper function (Edgren & Nylinder 1949) was used 
to calculate the diameters along the stems at increments of 10 mm.
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Figure 1. Stem distribution and tree height of virtual Scots pine stand compiled from preharvest inventory of 448 
stands. Average tree height is given by solid line, while dashed lines indicate standard deviation of tree heights. 
Stand was used as input to bucking simulations carried out. 

An application was developed that maximizes the value of stems given a log price list. The 
application uses dynamic programming to find the optimal bucking pattern of each stem. As 
input the program takes a log price list and a description of the virtual stand previously described. 
The log price list has a format known as StanForD (http://www.skogforsk.se) which is widely 
used in Scandinavia for exchange of information with harvesters. An option in the StanForD 
format was used which allows for specifying the desired distribution of lengths in each diameter 
class. An adaptive production-control algorithm (Nordmark 2005) was used to adjust the prices 
in order to meet the desired distribution of logs. The stand was bucked 50 times in sequence 
starting with current market log price list, and the log prices were updated after each time. The 
maximum allowed price deviation was set to 15%. The final log prices achieved (if working as 
supposed) should then be used when harvesting final fellings and bucking for the sawmill. 

RESULTS
The proposed model for assessing the product yield in different log classes gives a reasonable 
explanation of why the lengths of the boards do not match the lengths of the logs and why this is 
more pronounced with smaller dimensions of lumber. Two lumber dimensions are used to 
illustrate the findings. In Fig. 2 the volume-yield length distribution of 38 x 100 center boards 
sawn from logs with the length 4300 mm is shown together with total volume yield for the 
competing dimensions 38 x 75 mm and 50 x 100 mm. The yield of targeted length 4200 mm 
shows a sigmoid pattern. Even from the smallest logs, a low yield is produced. With increasing 
log diameter, the yield of 4200 mm boards increases up to a point where it flattens. At that point 
the increase in log volume is equal to the increase in board volume and thus gives a constant 
yield. The maximum total yield is achieved if 38 x 100 mm is sawn with logs in the approximate 
interval 130 mm to 145 mm. If log volumes are evenly distributed among diameter classes in the 
interval, the yield of 4200-mm-long boards then becomes 61% of the total board volume 
produced. The log-sorting limit applied at the sawmill is 127 mm to 142 mm. The model 
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estimates that this strategy will produce 50% of the board volume at the targeted length. In order 
to increase the volume share above 61% it is necessary to differentiate prices among the lengths 
and dimensions to offset the sorting limits from the highest volume-yield solution. Applying 
volume maximization to the other log lengths between 3100 mm and 5500 mm reveals one more 
interesting finding. The optimal interval of diameters is 134 mm to 150 mm for 3100-mm-long 
logs. The interval moves towards smaller diameters as log length increases, ending at 128 mm to 
142 mm with 5500-mm-long logs. The other lumber dimension examined was 50 x 200 (Fig. 3). 
The yield of 4200-mm-long boards shows a different pattern. A very small share of the boards is 
predicted to be trimmed below the target length due to wane. The lines in the figure representing 
total yield of the three competing dimensions 63 x 175, 50 x 200 and 63 x 2000 include the 
volume of side boards. Current sorting limits practiced by the sawmill are 248 mm to 261 mm. 
The sorting limits depicted by maximum total yield are preferably lower. It is noticeable that the 
yield loss that arises when the sorting limits are offset is much less than in the case with the 38 x 
100 dimension. In Figs. 4 and 5 the distribution of log volumes and board volumes recorded by 
the sawmill is shown together with the distribution of board volumes as predicted by the model 
using the sawmill’s current sorting limits. The figures present examples of the general pattern 
found when comparing the simulated length distribution with observed distributions from the 
sawmill’s production. For small dimensions the model underestimates volume recovery by 
predicting shorter lengths, while the model overestimates the volume recovery for large 
dimensions by predicting too long lengths. For intermediate dimensions the model gives a good 
estimate of recovered volumes. The model estimates total yield to 44.9% compared to 43.2% 
recorded by the sawmill. The volume of side boards is very well predicted, while the volume of 
center boards is overestimated by the model. 
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Figure 2. Predicted volume yield length distribution of 38- x 100-mm boards yielded from 4300-mm-long logs 
with varying small-end diameter. Yield is expressed as proportion of log volume. In each presented 2-mm-wide log 
class, the leftmost bar represents boards 1800 mm long, and succeeding bars show boards with a 300-mm length 
increment up to the rightmost bar representing 4200-mm-long boards. Lines show total volume yield for three 
competing dimensions. 
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Figure 3. Predicted volume yield length distribution of 50- x 200-mm boards yielded from 4300-mm-long logs 
with varying small-end diameter. Yield is expressed as proportion of log volume. In each presented 2-mm-wide log 
class, the leftmost bar represents boards 1800 mm long and succeeding bars shows boards with a 300-mm length 
increment up to the rightmost bar representing 4200-mm-long boards. Lines show total volume yield for three 
competing dimensions. 
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Figure 4. Sawmill’s distribution of logs by length classes within diameters 127 mm to 142 mm SED and 
predicted and observed length distribution of 38- x 100-mm boards yielded from sawing the same logs. Actual log 
lengths within a length class were 100 mm to 399 mm longer, while logs used for simulation were 100 mm longer 
than length class shown. 
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Figure 5. Sawmill’s distribution of logs by length classes within diameters 248 mm to 261 mm SED and 
predicted and observed length distribution of 50- x 200-mm boards yielded from sawing the same logs. Actual log 
lengths within a length class were 100 mm to 399 mm longer, while logs used for simulation were 100 mm longer 
than length class shown. 

Results from optimization of log sorting, i.e., allocation of log classes to sawing patterns, are 
compared to the sawmill’s current practice in Table 3. With open market conditions and current 
log distribution (setup alternative no. 1), contribution was increased by 5.5% when value was 
maximized. Excessive production of certain dimensions makes this alternative hard to realize. In 
alternative no. 2, realistic constraints were set on minimum and maximum volumes of boards by 
thickness and width. The increase in contribution then amounted to 2.4%. The log-sorting 
schema resulting from alternative 2 is presented in Fig. 6. The schema shows a rather complex 
pattern that differentiates sawing patterns by log length as well as by log SED. Introducing 
constraints on the length distribution of the boards made the problem unfeasible with the current 
log distribution. Free distribution of log lengths within each 2 mm wide diameter class shows a 
potential of 10% (alternatives 3 and 4). Considering the harvesters’ measurement accuracy, these 
two alternatives will not be practically feasible, as the solution requires very narrow intervals on 
the diameters for certain lengths. Setting the log length distribution equal at all diameters 
(alternative 5), the constraints were fulfilled and the contribution increase was estimated to 6.1%. 
It can also be noted that the volume recovery was decreased in most cases when the objective 
was to maximize value. Maximizing the volume yield shows a rather low potential (1.6% in 
alternative 2) indicating that the sawmill has been good at this.
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Table 3. Value and volume yield relative to the sawmill’s current log supply and log sorting strategy. 

  Optimization objective 
  Constraints on 

boards
produced

Value Volume

Setup
No. Log length distribution 

Thick.
Width Length Value Vol. Value Vol.

  -(%)- 
1 Current No No 105.5 100.6 102.6 102.6 
2 Current Yes No 102.4 99.9 101.0 101.6 
3 Free lengths within diameter 

classes
Yes Yes 109.4 99.7 100.5 102.6 

4 Free lengths within diameter 
classes

Yes No 110.5 99.4 94.1 103.5 

5 10% 3700, 30% 4300, 20% 
4600, 30% 4900, 10% 5200 

Yes Yes 106.1 99.3 105.7 100.2 
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Figure 6. Log sorting schema obtained from value optimization with sawmill’s current log distribution and with 
constraints on volume produced in each dimension (thickness x width). Numbers correspond to sawing classes as in 
Table 1. 
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Simulations of bucking with production control showed that the desired log length distribution 
could be fulfilled. In Fig. 7, developments of volume shares are shown. After approximately 40 
iterations, targets are met. The original log prices were adjusted by less than 5% in 67% of the log 
classes; 18% had their prices adjusted by 5% to 10% and the remaining 15% had their price 
adjusted by more than 10%. However, the final set of prices arrived at after 50 iterations does not 
exactly yield the desired log length distribution when the volume produced is reset and the prices 
are applied to the virtual stand and not allowed to change. In fact, it does not seem to be possible 
to find such prices, at least not using integer log prices in SEK as in this study. 
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Figure 7. Evolution of volume shares of sawlogs within diameter classes using adaptive log prices for production 
control in bucking. Targeted shares were 10% 3700-mm-long logs, 30% 4300 mm, 20% 4600 mm, 30% 4900 
and 10% 5200 mm within each 20-mm-wide diameter class. 

DISCUSSION
By using realistic log geometries and by accounting for imperfections in the process, we have 
achieved a model of the conversion process that reflects reality rather well. The model is explains 
the mismatch between log length and board length for smaller dimension lumber. It also shows 
that increasing the share of target lengths at small dimensions can only be done at a relatively 
high cost in terms of volume yield. Deviations between yield predicted by the model and the 
sawmill are mainly found in length distributions of center boards at larger dimensions sawn with 
the band saw. The sorting limits practiced on large dimensions are set to accommodate side 
boards. The risk of getting wane on the center boards then becomes low. Instead, trimming is 
necessary due to quality features other than geometry, which the model presented here did not 
deal with. Larger dimensions are often trimmed to and sold as commodity grades, while smaller 
dimensions often are sold saw falling. As the volume of sideboards is predicted accurately, the 
simulations are believed to model the sawing process realistically in other respects as well. The 
aspect of quality is treated briefly, as the prices used are the average prices of the lumber. Such an 
average price may reflect the quality distribution of the lumber as well as the market’s desire of 
certain lengths. For instance, when statistics on lumber sales during 2004 were examined, several 
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large dimensions showed decreasing prices with increasing length. However, in each grade the 
prices were positively correlated to length, but longer lengths shifted the distribution of grades 
towards cheaper (poorer) quality, giving a lower average price. Hence altering the log lengths will 
have an effect on grade distribution, which is not estimated by the model, though it is partly 
reflected in the product prices used. In order to include quality features in log sorting practice, it 
is possible to use compiled data such as bumpiness, taper, etc., from a 3-D measuring device at 
the log sorting station to predict the quality distribution of a log’s boards and use the prediction 
for stratified sorting (Lundgren 2000; Oja et al. 2003). Nordmark and Oja (2004) showed the 
possibility of using the 3-D geometry of stems to include the quality feature in automated 
bucking. Sondell et al. (2004) has shown the successful implementation of automatic prediction 
of furniture grades in a harvester’s bucking system using the relation of log small-end diameter 
and stem DBH. 

In this paper we have restricted the work to the set of sawing patterns in use by the 
sawmill. The search for optimal sawing patterns is an interesting task in itself which has been 
addressed by Maness and Adams (1991). More sawing patterns can easily be included in this 
model. However, LP software capable of dealing with more than 2000 variables is needed.  

The log sorting instructions emanating from this study differentiate logs by small-end 
diameter and length. It is likely that log taper should be included as a primary feature used in log 
sorting. A more elaborated approach to log sorting has been proposed by Nordmark (2005) in 
which simulated sawing of the 3D profile acquired on an individual log was used to predict the 
value yield with several competing sawing patterns and the pattern giving the highest value being 
chosen. Furthermore, that model is well suited to production control, as it operates with product 
prices directly rather than sorting criteria derived from product prices.

With the sawmill’s current log distribution, the results suggest that gains in value recovery 
can be made by altering the log-sorting instructions. Part of the value gain is realized if sorting 
limits are varied over log lengths, in contrast to today’s situation where log sorting is based on 
SED alone. The contributions computed, expressed as SEK/m3, show a positive correlation with 
length. This means that processing costs and market price outweigh the effect of a lower volume 
yielded with longer logs. Part of the value gain of 6.1% achieved when altering the bucking 
pattern (alternative 5) is due to longer logs. The average log length was increased by 299 mm. 
This setup also satisfies the desired length distribution of the boards. It is likely that increasing 
the volume of products with high demand at the expense of products that are hard to sell will 
generate further gains by reduced stocking. A prerequisite for realizing the value potential is that 
the log distribution can be changed as assumed. An appropriate log price list together with the 
option of apportionment within log diameter classes provides the means of controlling the 
harvesters’ bucking. In practice, severe defects on the stems being bucked force the operator to 
override the computed optimal cross-cutting positions in order to avoid costly downgrading to 
pulpwood. Such imperative cuts reduce the ability to fulfill the desired apportionment.

Introducing the length dimension of lumber as an important feature in the chain of 
converting trees to lumber makes it necessary to address bucking as well as log sorting. The 
system model developed could be even more detailed and perhaps better tuned. However, we 
conclude that a good first step has been taken towards a better customer orientation, and we 
intend to implement the results gradually while carefully monitoring the outcome.  
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INTRODUCTION 
The Saw2003 software is capable of reading log description files from the Swedish Pine Stem 
Bank (SPSB). It is also able to simulate the disintegration of the logs, in a manner similar to a real 
saw mill. This is a quick guide of how to operate the software through its graphical user interface. 

MAIN WINDOW 
The main window holds 6 child windows referred to as views. 

Depending on which view is active the menu and toolbar buttons change. In the image above the 
Script view is active and the menu option Script is visible and the Run button  is enabled. 
Activating other window will hide Script from the menu and disable the Run button .
Commands always active are listed below. 

Board view 

Slice view 

Log view 

Script view

Positioner 

Info view 
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Command Short Cut Description 

CTRL + “L” Open the Stem Bank dialog for selecting a log 

CTRL + “S” Saw current log 

Settings /PostList…  Select a post list file. The selected file will be 
loaded. It will also be loaded next time 
program starts. 

 /PriceList…  Select a price list file. The selected file will be 
loaded. It will also be loaded next time 
program starts. 

 /QualDef…  Select a quality definition file. The selected file 
will be loaded. It will also be loaded next time 
program starts. 

 /StemBank…  Selects log database.  

 /Dump  Writes the various settings of the machinery to 
Info view and the selected control files. 

View /Log
 /Boards 
 /Slice 
 /Info 
 /Positioner
 /Script 

 Select or create view 

The log selection dialog allows the user to load a selected log to the saw mill, or by checking the 
Whole Tree check box a stem can be loaded. 
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LOG VIEW 
The Log view shows the currently loaded log. 

Command Short Cut Description 

Left Mouse button + Mouse 
move up/down 

 Rotates the log around its long axis. 

Right Mouse button + Moves 
move

 Rotates the log around its mid height 

 “S” Toggle Surface ON/OFF 

 “H” Toggle Heart wood ON/OFF 

 “K” Toggle Knot axis ON/OFF 

   

Log /CutLog…   Brings up the cut log dialog allowing for 
shortening of the log or rebucking of loaded 
trees.

With the cut log dialog it is possible to shorten the current log/stem by cutting it at the butt end 
and top end. The program keeps the original log in memory so it is possible to restore its full 
length by calling up the dialog and readjust the sliders. 
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SLICE VIEW 
The slice view shows a cross-section (slice) of the log as viewed from the top end of the log.
Knots are color coded, green for sound knots and blue for dead knots. 

The position of the current slice is reflected in the Log view by a red shadow as shown in right 
image (surface removed for clarity). 

Command Short Cut Description 

Left Mouse button + Mouse 
move up/down 

 Rotates the log around its long 
axis.

Right Mouse button + Moves 
move

 Move up/down the log 

 “P” Tri-state. Toggle 1:st saw cuts, 
both saw’s cuts, no cuts. 

 “D” Dump a detailed report of 
current slice to Info view 

BOARD VIEW 
The board view shows boards with wane and knots. 
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Command Short Cut Description 

Left Mouse button + Mouse 
move up/down 

 Rotates the boards around its long axis. 

Right Mouse button + Mouse 
move up/down/left/right 

 Rotates the boards around their mid height 

   

 “Space bar” Iterate through the boards. 

 “T” Tri-state. Boards not trimmed. Boards not 
trimmed but with trim marks. Boards trimmed. 

 “Q” Show color coded qualities on board. Knot 
diameter, sum of knot diameters, wane. 

 “D” Dump a detailed report of the current board to 
Info view. 

 “+-“ Change scale proportions. 

POSITIONER
The positioner is an interface to the sawing machines and how the log is positioned there. 

Command Short Cut Description 

Horns down  Log gets automatically rotated horns down 
(crook up) prior to sawing 

Centre  Log get automatically centered prior to sawing 

Curve saw  The cant will be curve sawn 

Auto post  Pattern is automatically selected based on log 
small-end diameter 
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INFO VIEW 
The Info view receives reports from various operations such as sawing a log or dumping slice 
data.

Command Short Cut Description 

 Clear  Clears the info view 
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SCRIPT VIEW 
In Script view, Visual Basic scripts can be edited and used to automate the sawing simulations. 

Command Short Cut Description 

 Clear  Clears the script view 

 Run
CTRL+”R” Start current script 

 Stop  Stops running script 

   

Script /Load script  Load a script from a text file 

Script /Save script  Save a script to file 
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Price list.txt 

Qualdef.txt

Sawing pattern.txt

[Sort5]
Name=S:"C-c"
ProdId=I:5
QIndex=A(3,I){1,2,3}
BasePrice=I:1000
Thickness=A(4,I){38,50,63,75}
ThickComp=A(4,I){100,100,100,100}
Width=A(7,I){75,100,125,150,175,200,225}
WidthComp=A(7,I){100,100,100,100,100,100,100}
Length=A(13,I){1800,2100,2400,2700,3000,3300,360
0,3900,4200,4500,4800,5100,5400}
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INTRODUCTION 
The sawing simulation software Saw2003 depends on a few control files. These files define how a 
log can be cut and how boards are graded and priced. In addition, files for production control 
and cost assessments are optional. The files are text files (ASCII) which allows for editing with 
any text editor. The format used (S2k) is native to the software and gives a structured and 
hierarchic representation of the data. Variables are easy to look-up and their type is given. The 
format is a home-brewed variant of the XML-standard which unfortunately was unknown to the 
author at the time of programming. The control files are listed in Table 1. 

Table 1. Control files used in Saw2003. 

File Format Importance Description 

Sawing patterns Table Necessary A look-up table with log small-end diameter as 
the key to patterns of nominal widths of cuts at 
first and second saw.

Quality definition S2k Necessary Grading rules following the system in Nordic 
Timber Grading Rules. 

Price list S2k Necessary Products and prices. A product is defined by 
grade and dimension. 

Order Table Optional Order book which can be used for adaptive 
control of production. 

Costs S2k Optional Cost coefficients of various operations in the 
sawing process. Allows for calculating a net 
value at log level. 

S2K FILE FORMAT 
S2k files are divided in sections. A section starts with the section name [SectionName].
Sections contain variables, one per row. First section is always the [Header]. In this section a 
variable Separators define characters that should be switched to a common separator such as 
TAB (ASCII 9). The use of different separators in the file serves the purpose of increasing 
readability when editing directly in the text file. Variables are typed and data can be scalar, array 
or matrix. The variable name is separated from data definition with “=”.
A scalar has the format: Var=type:value.
Arrays have the format Var=A(nValues,type){value1,…,valuen}.
A matrix has the format: Var=M(mRows,nColumns,type)
{{row1col1,…, row1coln }{…}{ rowmcol1,…,rowmcoln }}.

Types defined are integer (I), decimal (D), string (S) constant (CT) and byte (B).
Strings and constants are enclosed in “ ”. The format also allows for user types which must be 
defined in the header section, e.g. E and F denotes Edge and Face in nKnots=A:(2,I)
{E(2),F(4)}. A user type is an extra tag on a value. Finally, a variable can be defined as an 
interval, e.g. Thickness=A(4,IV:I){16 25,32 38,44 50,63 75}. This should be 
interpreted as an array of four integer intervals. 
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SAWING PATTERNS FILE 
The structure of a sawing pattern file is given in Table 2. Data is row based. Each row 
corresponds to a sawing pattern. Columns are separated with TAB. Explanations of data is given 
in Table 3. Column headings are not interpreted by the software which implies that the order of 
columns cannot be changed. Last three columns are optional.  

Table 2. Sawing patterns file structure. See Table 3 for explanation of columns. 
ID_
NR

ID_NAME MIN
_D

MA
X_D

KS_POST DS_POST KS_BOA
RDS

DS_BOAR
DS

SAW
_LI
NE 

SAW_S
PEED 

LOG_
GAP

1 38x75 114 126 75 38,38 b c,c 2 110 1900 
2 38x100 126 143 100 38,38 b c,c 2 110 1900 
3 50x100 143 161 100 50,50 b c,c 2 105 1800 
5 50x115 161 172 115 50,50 b c,c 2 100 1700 
6 50x125_1 172 183 125 19,50,50,19 b s,c,c,s 1 68 2300 
7 50x125_2 183 196 19,125,19 25,50,50,25 s,b,s s,c,c,s 1 68 2900 
8 50x150_1 196 207 150 25,50,50,25 b s,c,c,s 1 68 2300 
9 50x150_2 207 215 19,150,19 25,50,50,25 s,b,s s,c,c,s 1 65 2500 
10 63x150 215 229 19,150,19 25,63,63,25 s,b,s s,c,c,s 1 65 3300 
11 75x150_1 229 237 25,150,25 19,75,75,19 s,b,s s,c,c,s 1 65 3800 
12 75x150_2 237 248 25,150,25 25,75,75,25 s,b,s s,c,c,s 1 60 3500 
13 63x175 237 248 19,175,19 25,63,63,25 s,b,s s,c,c,s 1 60 3500 
14 50x200 248 261 200 25,25,50,50,25,25 b s,s,c,c,s,s 1 50 5500 
15 63x200 261 268 19,200,19 19,25,63,63,25,19 s,b,s s,s,c,c,s,s 1 50 5500 
16 75x200 268 300 25,200,25 19,25,75,75,25,19 s,b,s s,s,c,c,s,s 1 50 5500 

Table 3. Description of columns in sawing pattern control file. 

No. Name Description 
1 ID_NR Numerical tag. 
2 ID_NAME Name. This name is shown in the sawing pattern selection list box in 

the graphical user interface. 
3 MIN_D Minimum small-end diameter. When automatic selection of sawing 

patterns is enabled the log small-end diameter is compared with 
MIN_D as greater than or equal to. 

4 MAX_D Maximum small-end diameter. When automatic selection of sawing 
patterns is enabled the log small-end diameter is compared with 
MAX_D as less then. 

5 KS_POST Nominal widths of cuts in first saw. Widths are the material between 
the kerfs. Sawing allowances, kerf widths and shrinkage allowances at 
first saw is set in the program. 

6 DS_POST Nominal widths of cuts in second saw. 
7 KS_BOARDS Type of product corresponding to a cut in first saw.  

s = side board, will be edged 
b = block, will be processed in second saw 

8 DS_BOARDS Type of product corresponding to a cut in second saw.  
s = side board, will be edged 
c = centre board 

9 SAW_LINE Tag that can be used when several sawing lines are simulated. 
10 SAW_SPEED Speed of sawing in meters per minute. To be used with cost 

assessments. 
11 LOG_GAP Gap between logs when sawing (mm). Used with cost assessments. 
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Min. and max. diameter intervals may overlap. If so, the software picks the first in list that 
matches log diameter when automatic selection of sawing patterns is enabled. 

QUALITY DEFINITION FILE 
The quality system used is built around the Nordic Timber Grading Rules. Limits on knot 
diameter, number of knots and wane can be changed within this system. An excerpt from the file 
is shown in Fig. 1. An explanation is given in Table 4. 

 Fig. 1. Definition of a quality within a quality file. 

Table 4. Description of variables in a quality definition file. 

Variable Unit Description 
[Sort2]  Section start of individual quality. These tags must 

be listed in the header section in variable 
SortNames. Tags not listed will be ignored. 

Name  Name of quality. 
Index  Pricelist is matched with index. A product in price 

list has a defined quality which is given by same 
index. Each quality defined must have a unique 
index.

nKnots No. Number of knots with maximum size. Actual 
interpretation is that the number multiplied with 
maximum knot size gives a maximum knot sum that 
is allowed. “E” is for Edges and “F” is for Faces. 

nKnotsUnit Constant A constant “w1m” is the only allowed value. “w1m” 
means that the worst 1000 mm section of board is 
considered for measurement of knot quality 
properties.

Thickness mm Thickness classes given as intervals. 
Width mm Width classes given as intervals. 

[Sort2]
Name=S:"B"
Index=I(2)
nKnots=A:(2,I){E:3,F:5}
nKnotsUnit=EF:CT("w1m")
Thickness=A(4,IV:I){16 25,32 38,44 50,63 75} 
Width=A(3,IV:I){75 115,125 150,175 225} 
EdgeKnotSize=A(4,I){CT("*"),30,40,50}
FaceKnotSize=M(4,3,I){{35,40,45},{40,45,50},{45,50,55},{50
,55,60}}
DryKnotRel= EF:I(70) 
WaneLength_LE25= A(2,I){30,40} 
WaneLength_GT25= A(2,I){20,30} 
WaneDepth= I(15) 
WaneWidth= I(12) 
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EdgeKnotSize mm Maximum sound knot size on edges corresponding 
to thickness classes given in variable Thickness.
Constant “*” means maximum size of sound knots 
equal to thickness. 

FaceKnotSize mm Maximum sound knot size on faces corresponding 
to the combination of thickness classes and width 
classes given in variables Thickness and Width.

DryKnotRel % of sound Dry knot size relative to sound knots. 
WaneLength_LE25 % of length Maximum length of wane for boards with thickness 

less than or equal to 25 mm.
WaneLength_GT25 % of length Maximum length of wane for boards with thickness 

greater  than 25 mm. 
WaneDepth % of 

thickness
Maximum wane depth on edges. In software, 3 mm 
is added to get actual limit. 

WaneWidth mm Maximum wane width on outside face. In software, 
3 mm is added to get actual limit. 

The maximum number of qualities that can be defined in a file is 32.

PRICE LIST FILE 
The price list is organized in price sheets. Such a sheet defines dimensions and prices and 
acceptable qualities. Several sheets can refer to the same quality. An excerpt from the file is 
shown in Fig. 2. Variables are explained in Table 5. 

Fig. 2. Definition of products by a price sheet in a price list file. 

[Sort1]
Name=S:"A-c"
ProdId=I:1
QIndex=I:1
BasePrice=I:1000
Thickness=A(4,I){38,50,63,75}
ThickComp=A(4,I){100,100,100,100}
Width=A(8,I){75,100,115,125,150,175,200,225}
WidthComp=A(8,I){100,100,100,100,100,100,100,100,100}
Length=A(13,I){
1800,2100,2400,2700,3000,3300,3600,3900,4200,4500,4800,510
0,5400}
LengthComp=A(13,I){  70,  70, 100,  80,  80,  80, 110, 
100, 120, 110, 120, 100, 100} 
ThickWidthComp=M(12,3,I){{38,75,125},{38,100,125},{50,100,
137},{50,115,136},{50,125,146},{50,150,138},{50,200,130},{
63,150,140},{63,175,135},{63,200,140},{75,150,138},{75,200



App. B. Saw2003 Control Files 

- 6 - 

Table 5. Description of variables in a price list file. 

Variable Unit Description 
[Sort1]  Section start of price sheet. These tags must be listed 

in the header section in variable SortNames. Tags 
not listed will be ignored. 

Name  Name of product. 
ProdId  Index of product. 
QIndex  Qualities allowed. Can be several indexes. 
BasePrice SEK· m-3 All dimensions in the price sheet starts with this 

default value. 
Thickness mm Nominal thickness classes of products. 
ThickComp % Price coefficient on thicknesses as given by variable 

Thickness.
Width mm Nominal width classes of products. 
WidthComp % Price coefficient on widths as given by variable 

Width.
Length mm Nominal length classes of products. 
LengthComp %  Price coefficient on lengths as given by variable 

Length.
ThickWidthComp %  Price coefficient on combinations of thickness and 

width. Format is (thickness, width, 
coefficient). The variable is optional and only 
affects explicitly given dimensions. 

ProdComp % Price coefficient on combinations of thickness width 
and length. Format is (thickness, width, 
length, coefficient). The variable is 
optional and only affects explicitly given dimensions.

As a price sheet is read the defined dimensions are expanded to a three-dimensional matrix 
(nThickness· nWidth· nLength). The initial base price then is multiplied with the price coefficients at 
the individual dimension, that is, the price of a board is the product of all coefficients and the 
base price. 

ORDER FILE 
The order file is to use with production control. Production control is employed through 
scripting in the software. Production can be controlled by number of pieces or by volume share. 
First row specifies total volume produced at start. The following table defines products under 
control (Table 6). Explanations are given in Table 7. Piecewise control is not well tested, thus it is 
recommended to use volume share control. 
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Table 6. Example of ordered products in an order file.  

Quant Prod Volume Prod Thick Width Length Products 

-1 0 20 0 19 75 2400 "B-s","C-s" 

-1 0 20 0 38 75 3000 "A-c" 

-1 0 20 0 38 100 3900 "A-c","B-c" 

-1 0 20 0 50 100 3300 "B-c" 

Table 7. Description of variables in a quality definition file. 

Column Unit Description 
Quant No. Ordered number of pieces, if piecewise control. 
Prod No. Produced number of pieces, if piecewise control. 
Volume ‰ Ordered volume share, if volume based control. 
Prod ‰ Produced volume share, if volume based control. 
Thick mm Nominal thickness of products. 
Width mm Nominal width of products. 
Length mm Nominal length of products. 
Products Names Products targeted. Names as given in price list file. 

COST FILE 
The cost file gives coefficients which are used for calculating the cost of processing a log. The 
sections in a cost file is presented and explained in Figs. 3-8. The cost functions were designed 
with special attention towards the influence of length of logs and boards. 

Fig. 3. Header. Variable SawLines defines name of sections with saw line attributes. 

[Header]
Separators= ,:(){} 
Magic=S:"Saw2k"
FileType=S:"Cost"
SawLines=A(2,S){"Saw1","Saw2"}
UserTypes=
Constants=
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Fig. 4. Log sorting. LengthSpeed is m· min-3. LogGap is distance between logs in meters.
HourCost is SEK· hour-3.

Fig. 5. Saw line attributes. Index is matched with saw line given in sawing pattern file. 
 HourCost is SEK· hour-3. LogGap is default distance between logs in meters. Log gap can be overridden by 
setting log gaps in the sawing pattern file. 

Fig. 6. Trimmer. HourCost is SEK· hour-3. PieceSpeed is pieces· hour-3 with the format (thickness, width, 
speed). 

[Trimmer]
HourCost=I:5458
PieceSpeed=M(29,3,I){{19,75,2500},{19
,100,2500},{19,125,2350},{25,75,2550}
,{25,100,2700},{25,125,2400},{25,150,
2300},{25,175,2000},{25,200,1980},{25
,225,1900},{34,112,2800},{34,128,2350
},{38,75,2600},{38,100,2550},{44,100,

[Saw1]
Name=S:"Band"
Index=I:1
HourCost=I:6289
LogGap=D:0.3

[LogSorting]
LengthSpeed=I:130
LogGap=D:1.5
HourCost=I:3300
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Fig. 7. Dryer. ThickMoistCost is cost coefficients when drying boards with a specific thickness to given moisture 
content. Format is (thickness, moisture content, b0, b1). Cost is calculated as (b0+b1· length-1)· volume. 

[Dryer]
ThickMoistCost=M(16,4,D){{19, 18, 
43.86, 516.58},{25, 18, 37.84, 
448.02},{34, 12, 44.0, 448.92},{38, 
9, 43.54, 515.53},{38, 18, 32.51, 
365.16},{50, 8, 43.04, 749.20},{50, 
9, 42.48, 655.55},{50, 12, 40.81, 
780.42},{50, 18, 31.69, 366.79},{63,
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INTRODUCTION 
This document describes algorithms and calculations internal to the sawmill simulator software 
Saw2003. The elements that make up the software are presented as they were implemented. 
Alternative methods are not discussed. The sole purpose of this paper is to aid in understanding 
why the results come out as they do, and perhaps other researchers or software engineers will 
find something useful. Fig. 1 provides an overview of the operations involved in processing a log 
into boards. 

Fig. 1. Flow of operations in Saw2003 from loading raw log description from Swedish Pine Stem Bank (SPSB) 
through conversion to final products. 

SPSB
-log geometry 
-knot properties 

First conversion to 
internal format 

Breakdown patterns 

Sawing attributes 
-kerf, allowances 
-curve sawing on/off 
-positioning of log

Rotation of log at 
breakdown

Second conversion 
to internal format 

Primary 
breakdown 
-positions of kerfs

Edging 

Trimming and
grading

Boards 
-grade
-dimension
-value

Grading rules 

Price list 
-dimensions
-product prices 

Side boards 

Centre boards 

View of log 

3D-representation 
of board geometry 

Assesment of board 
knot properties 

Evaluate

Edged boards 

Knots on 
outside



App. C. Saw2003 Kernel 

- 4 - 

LOG REPRESENTATION 
Descriptions of log and knot geometry following the format of the Swedish Pine Stem Bank 
(SPSB) can be loaded by the software. As the descriptions are loaded they are converted to an 
internal format. At the time of sawing a second conversion is performed in order to speed up the 
performance of the actual breakdown. The second conversion is linked to the rotation of the log. 
Whenever the log rotation is altered the conversion is recalculated. Internally full 3D 
representation of log and boards are maintained allowing for realistic graphical views on a 
computer screen. The dimensions used to describe the geometries are x, y and z were z is the 
longitudinal direction with butt-end at z = 0 and top-end oriented in positive direction with  
z = log length. Radial extent of log is placed in the first quadrant so that x and y are positive. 

Accessing the SPSB 
At program start a predefined directory is scanned for log descriptions. The path of the directory 
is stored in program registry 
“HK_CURRENT_USER\Software\SveaskogUrbanNordmark\Ldb_Vsm\Path”.
A subdirectory found which name consists of digits is considered to represent a plot (stand) with 
trees (Fig. 2). The number extracted becomes the plot number. In the next step each plot 
subdirectory is scanned for log geometry files, that is files with name “*yt.txt”. From name of 
each file found, tree number and log number are extracted from positions T and L in filename 
“PPPPTLyt.txt”. Internal to the software a database of numbers of Plots, Trees and Logs is built. 
The numbers are used to retrieve the full path to a log geometry file when a log is selected 
through the interface. When a log geometry file is to be loaded a scan for corresponding knot 
description file is performed (PPPPTLkv.txt) which is loaded if found. Descriptions following the 
SPSB format can be added or removed from the directory structure and this will be reflected in 
the program at start up. Aside from the automatic procedure described, any SPSB formatted log 
description can be loaded through scripts by passing the full path name. 

LDB_VSM
0001
0002
0003
0004
0005
0006

-000611KV.TXT
-000612KV.TXT
-000621KV.TXT
-000622KV.TXT
-000631KV.TXT
-000632KV.TXT
-000633KV.TXT

Fig. 2. Directory structure of SPSB. 

Reading log descriptions 
The file format used for storing log geometry descriptions is a variant of the TIFF image 
standard. The SPSB was originally compiled on a Macintosh computer system. As Motorola 
processors (Mac) and Intel (PC) have different byte order the program checks whether byte 
swapping is necessary. Important data in the header are image scale and image length. Image data 
start at byte 768. There are two images in a file. First image represents heart wood border and 
second image following immediately after represents log surface. The image width is 364 pixels. 

Directory pointed to by registry key 

Subdirectories with plot numbers 

Stem 1

Stem 2

Stem 3

Logs
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Each row in an image represents a cross-section of the log. First row should be butt-end of log. 
The longitudinal distance between cross-sections is 10 mm. The 360 first pixels (bytes) of a row 
give the radius from pith to surface or heart wood border at angles 0-359. Bytes 360 and 361 
gives the coordinates of pith (x, y). Byte values extracted (0-255) is converted to mm by the scale 
factor given by (ImageScale /256). Image scale varies between 350 mm to 450 mm per 256 pixels. 
ImageScale is stored as a 2 byte integer starting at byte 424 in the header. The polar coordinates are 
converted to x- and y- coordinates (Fig. 3). After a complete log has been read the log is 
repositioned in 3D space so that pith at both log ends is centred at coordinates (500, 500). Fig. 4 
give a view of a log-end cross-section. 

Fig. 3. Cross-section of log is represented with polar coordinates of heart wood radius (HWRad) and surface 
radius (LogRad) originating from pith. Coordinates are converted to rectangular coordinates. 

Fig. 4. Representation of cross-section of log, viewed from top-end towards butt-end. Log is fitted within a 1000 
mm x 1000 mm coordinate system and translated so that pith at both log ends is positioned at (500, 500). 
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Loading a stem 
Logs originating from the same tree can be assembled to a stem. The order logs are connected to 
each other is given by their log numbers. As each read log is translated so that the pith at each 
end is located at (500,500) it is simply a matter of adding the cross-sections of every read log to a 
common array holding the stem. 

Cutting a log or a stem 
A log can be cut shorter. Cutting is specified by setting a start variable and a stop variable with 
the positions where the segment is located within the original log. The original log is maintained 
in memory allowing for elongating or restoring a log that previously has been cut. A cut log is 
processed further by sawing machines as if the cut-off at each end doesn’t exist. 

Geometric properties

Area

The area of a cross-section is given by Eq. [1]. 

359

0

2

360 i
irA (1)

where:
A = area (mm2) 
i = angle 
r = radius (mm) 

Center of gravity (Cg) 

Coordinates of centre of gravity are calculated by Eqs. [2, 3].
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CgY (3)

where:
CgX = x coordinate of centre of gravity 
CgY = x coordinate of centre of gravity 
x = x coordinate of radius 
y = y coordinate of radius 

Diameters

At a cross-section three measures of diameters are derived. EqDiam is the diameter of a circle 
with an area equal to the area of the cross-section. MinDiam is the minimum shadow diameter 
found. CrossDiam is the diameter in a given direction. At log level a SortDiam is calculated to be 
used when automatic selection of sawing patterns is enabled. 
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AEqDiam 2  (4) 

The CrossDiam is the maximum diameter in a specified direction (Angle). The measure 
corresponds to the shadow diameter in direction Angle +90°. An algorithm searches the two 
opposite sectors specified by Angle ±46° and Angle+180 ±46°, Fig. 5. The search step is 2°. 
Diameter is calculated as max( d1)+max(d2) with Eqs. [5-7]  

iii rvCosd )(1   (5) 

1801802 iii rvCosd )(   (6) 

ii ddCrossDiam 21 maxmax  (7) 

where:
i =  direction ±46° 
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Fig. 5. Illustration of the CrossDiam measure. Example with search for the maximum extension in direction 0°. 
Search is done within shadowed areas. 

The MinDiam is searched for using the algorithm for CrossDiam. Search is performed by passing 
directions 0°-170° with 10° increment to function CrossDiam.

SortDiam is the measure of log small-end diameter used for finding sawing patterns when 
automatic selection of sawing patterns is enabled. The SortDiam is the average EqDiam of cross-
sections at positions 150mm to 50 mm from log top-end. 
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Log volume 

An array of accumulated log volume is built from butt-end upwards. The increment in volume is 
given by slice area multiplied with the stem length it represents. With SPSB the stem length 
increment is 10 mm. The volume of a stem segment anywhere within log butt-end and top-end is 
then given by Eq. [8].

startstopsegment VVV  (8) 

where : 
Vsegment = volume of log section 
Vstop = accumulated volume at top-end of log section 
Vstart = accumulated volume at butt-end of log section 

Knot properties in log 
In SPSB properties of knots are stored in text files in same directories as their corresponding log 
geometry descriptions. A knot is described by 11 parameters, (A-K). Figs. 6 and 7 illustrate the 
notation used in the following equations. The knot angle in radians in tangential direction at the 
distance rp pixels from the pith is given by Eq. [9]. Knowing the scale in the original CT images, 
the diameter of the knot in mm can be calculated. The rotation of the knot axis is given in 
degrees by Eq. [10], and the longitudinal position within the log is given in cm by Eq. [11]. In the 
SPSB, parameters E and F are used to describe the knot diameter in the longitudinal direction. 
Because the resolution is 10 mm between the CT images, the longitudinal knot diameter is better 
approximated using Eq. [9] with the assumption that the knot cross-section is circular. Hence, the 
E and F parameters are not used here. Parameter I is the distance in mm from the pith to the end 
of the knot. Parameter J is the distance in mm from the pith to the dead knot border. Parameter 
K is distance from pith to the outer face of the log at the point where the knot axis intersects the 
outer face. For a nonoccluded knot, K = I.

)(
/41

2 PP rBA  (9) 

pp rDC ln  (10) 

prHGZ  (11) 

Eq. [9] has been reported with out the coefficient 2 in some papers. Thus giving half the angle 
P .
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Fig. 6. Knot geometry notation, projection to a cross-section 

Pith Log surface 
Z

rp

Knot 
axis 
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Fig. 7. Knot geometry notation, projection to a radial section. 

The functions are converted so they take radial distance in mm instead of pixels. The conversions 
are given in Eqs. [12-17]. 

Aa 2   (12) 

4

1

2 ScaleBb  (13) 
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As the measures of a knot all originate from the pith, coordinates of pith are stored with every 
knot. The algorithm for searching if a knot is intersected by a board surface is based on the 
position of the knot axis. A structure holding the coordinates of knot axis is set at the time of 
sawing. First the pith is rotated along with the log. Then the rotated coordinates of knot axis at 
positions 1 mm to knot end (I) is calculated. 

KnotAxis[rmm] .x 
.y
.z]

Log crook 
The log crook is of importance when curve sawing is enabled. There are two aspects of the crook 
handled by the program. First, the direction of the crook, i. e. the radial angle, is used to set the 
log in rotational position “Crook up”. Second, the crook is approximated to a curve function 
which determines the saw lines in the second saw when curve sawing. 

Direction of crook 

Direction of crook is measured at the point along the log where the centre of gravity (Cg) of 
cross-sections has its maximum deviation from a straight line through the log. Fix point 
coordinates of the straight line is calculated as the average Cg of a section at the top-end of the 
log and of a section at butt-end. At the log’s top-end the section is 300 mm long and positioned 
from log small-end and 300 mm towards butt-end. At the log’s butt-end the section is 300 mm 
and positioned between 500 mm to 800 mm from butt-end. Maximum bow height is searched 
for between the fix points (longitudinal positions 650 mm to (log length-150 mm)). Search is 
done at positions with an interval of 100 mm. At every position a filtered value of Cg is calculated 
as the average of a 100 mm long section of the log. Deviation of Cg from reference line is 
calculated in both X-plane (dX) and Y-plane (dY) respectively. Bow height is calculated as the 
Euclidian distance of Cg to reference line. Fig. 8 provide an example of the search for maximum 
bow height. At the position of maximum bow-height the direction of the crook is given by the 
arctangent of dX/dY.
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distance of Center of gravity (CgX and CgY) to the reference line (RefX and RefY). Example with log 1,1,1 from 
SPSB.
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Curve function 

When curve sawing is enabled the saw blades follows a curve given by a second degree 
polynomial function. Eq. [21] and Fig. 9. The equation is set by the use of multiple regression on 
the center of gravity of cross-sections along the log. The regression is handled by an underlying 
matrix class. The interval of positions used for regression follows the Z-resolution set on the log 
(defaults to 100 mm). When sawing the saw blades follow the curve given by the equation but the 
curve may be displaced by the settings of the log centring units. 

2

110 xxxf )(  (21) 

where:
f(x) = coordinate 
x = longitudinal position (mm) 
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Fig. 9. Regression line of centre of gravity at longitudinal positions within log. Example with log 1,1,1 from 
SPSB and rotated crook upwards. 

SAWING 
Primary breakdown is controlled individually at first saw and second saw. Settings that affect the 
geometric aspects of the results are breakdown pattern, saw allowance, shrinkage allowance, kerf 
and log positioning. Furthermore the log can be either straight sawn or curve sawn in second 
saw.

Positioning of log 
Log is positioned prior to sawing. The positioning determines where the kerfs are placed through 
the log. Positioning is controlled by centring units, two at first saw and two at second saw. A 
centring unit is placed at a given distance from the top-end of the log. With two centering units at 
different distances a straight line equation through the log is derived, Fig. 10. The centre of the 
current sawing pattern then follows this line.  
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Fig. 10. Geometry of log centring setup. Log is individually centered at first saw and second saw respectively. 

When a centring unit is set to 0 (zero) the saw line centre passes the centre of the log at the 
longitudinal position where the unit is placed. Offset at a unit is given in mm. By setting both 
units to same value the log can be parallel displaced while keeping the front unit setting fixed the 
log butt-end can be skewed by changing the back unit settings. The centred position at a unit is 
measured at the one log cross-section closest to the unit. Centre is the coordinate in the mid of 
minimum and maximum extension of cross-section in the considered dimension (X or Y), Fig. 
11.

Fig. 11. Principle of determining the centre position of a log cross-section at first saw. 

Internally in the software the log is fixed and the sawing centre line is fitted to the coordinates of 
the log. When straight sawing in second saw, the principle of centring is the same as in first saw. 
When curve sawing the log in second saw, the curved sawing centre line passes centring units at 
offsets given by the settings at each unit, Fig. 12. 
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Fig. 12. Principle of curve sawing at second saw. The curve crosses the straight log centre line at centering units 
when the offset is set to 0. 

Secondary conversion of log representation 
Prior to breakdown the log data are converted to a rotated representation of the log. This 
conversion is recomputed whenever log rotation has changed or the log otherwise has been 
altered. The new data are stored in two structures pX and pY. pX[zPos] references a processed 
cross-section at zPos mm. These cross-sections hold the following data: 

.Pos[] array of high/low values 

.Height height of cross-section within log (mm) 

.Cg coordinates of centre of gravity (mm) 

.start first index of high/low array  

.stop last index of high/low array 

The .Pos[xPos] array gives the lower and upper y-coordinates of log surface at position xPos from 
xPos = start to xPos = stop.

In Fig. 13 examples of values contained in .Pos[] are shown together with a board. The wane at 
the corner outside log can be calculated as with Eqs. [22, 23] 

highPoszPospXWanedepth ].[].[ 595590  (22) 
highPoszPospYWanewidth ].[].[ 590595  (23) 

With the example wane depth is 11.6 mm and wane width is 32.0 mm. Such calculations are very 
fast as they require few computer operations. The example shown is the essence of the break 
down calculations used. In order to avoid testing for all possible combinations of interrelations 
between board coordinates and log structure some heuristics are used. 
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Fig. 13. Representation of cross-section by structures pX (left) and pY (right) after rotation and conversion. 
Referencing pX by an x-position the lower (low) and upper (high) extension of log is given in y-coordinates. pY 
works in analogy, referencing by y-positions gives extension of log in x. Example with cross-section no. 62 of log 
1,1,1 from SPSB. The position of a 50x100 centre board is also shown. 

Breakdown
The actual breakdown proceeds after the second conversion of log geometry previously 
described. Conceptually the process is a sequence of operations. At first saw the log is divided 
into side boards and a cant. The cant is then rotated 90° and passed to the second saw where the 
cant is divided into side boards and centre boards. Side boards from first and second saw are 
edged. Finally all boards are trimmed.

First saw (CantSaw) and second saw (DealSaw) 
A sawing pattern chosen for break down of a log specifies the nominal widths of the cuts at the 
saw. The actual cutting dimensions are calculated using variables SawAllowance and 
ShrinkAllowance, Eq. [24]. The kerf width is given by the variable SawBladeWidth.

nomraw CWShSaCW  (24) 
where:

CWnom = nominal cut width (mm) 
CWraw = raw cut width (mm) 
Sa = saw allowance (mm) 
Sh = shrink allowance 

Following the procedure of log centring, the positions of cutting lines at each cross-section are 
calculated. At first saw a cutting line through a cross-section is defined by an x-coordinate while 
at second saw a cutting line is defined by a y-coordinate. Faces produced by the cuts are stored in 
a BoardSide structure. Variables of the BoardSide are: 

.Width nominal width of face, on side boards this is set when edging (mm) 

.RawWidth green target size (mm) 
Normal orientation of face in 3D (x,y,z) 
.SideProfile[] array of 1D-profiles 
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The Normal in BoardSide gives the key on which dimension in space is considered in the SideProfile
structure. The data within SideProfile define start and stop coordinates in mm for different 
features. Start corresponds to left point when viewed from top-end and with face upwards.  

.height zPosition within log 

.cutPos position of face, 

.target_start targeted start position  

.target_stop targeted end position 

.wane_start start position the board (left) 

.wane_stop end position board (right) 

.face_start start position of sawn surface (left) 

.face_stop stop position of sawn surface (right) 

In Fig. 14 is illustrated how the array of .SideProfile[] builds the outside face of an edged side 
board. In Fig. 15 the relation of a single SideProfile to the log is illustrated 

Fig. 14.. Representation board side. Board side is built up by an array of 1D-profiles which define start and stop 
coordinates of sawn surface, log surface and targets. 
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Fig. 15. Cutting line at y = 590 on cant at cross-section no. 62, log 1,1,1 from the SPSB. The SideProfile of 
the outlined board’s outside is shown. Normal (x,y,z) of board side is (0,1,0). 
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The process of sawing at first and second saw is accomplished by grouping four board sides 
together to form a board and setting the values on their SideProfiles. Side boards have incomplete 
data until they have been edged.  

Setting knots on board 
The algorithm used for detecting if a knot in the log is intersected by the cutting plane of a board 
side is based on the 3D coordinates of the knot axis and the SideProfiles of the board’s four sides. 
At the outermost loop the algorithms iterates over the knots of the log. For a given log knot the 
algorithm iterates over the knot’s radial distance (rmm) from 1 mm to knot end (I) retrieving 3D-
coordinates (x,y,z) of the knot axis. Next step is to iterate over the boards’ four sides retrieving 
the SideProfile given by z. The Normal of board side is used to determine which dimension of 
knot axis is to be used to check whether there might be an intersection. If Normal.y  0 then
KnotAxis.y is compared to cutPos of SideProfile and if y is within 3 mm from the cutting plane we 
might have an intersection. Next step is to check if KnotAxis.x ± knot diameter/2 is within face_start
and face_stop and if so we have a knot on the board face. At the point of intersection the knot is 
assumed cylindrical with diameter given by Eq. [18] (Dknot) and oriented in the direction of knot 
axis, Fig. 16. With notations as in Fig. 17, Eqs. [25-30] are used to set the properties of a board 
knot. The value of r at the intersection in relation to knot parameter J determines if the knot is 
marked as sound or dead. 

Fig. 16. Cylindrical diameter of knot at point of intersection is projected to board face. 

xz
dxv arctan

2
1   (25) 

where:
v1 = angle of knot axis to Normal of board side 
dx = difference of xr-1 and xr+1 at intersection 
xz = Euclidian distance of dx and dz

dx
dzv arctan

2
2   (26) 

where:

v1

Normal 

Knot axis 
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v2 = rotational angle of knot axis 
 dz = difference of zr-1 and zr+1 at intersection 

2

1
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DD knotlong cos
cos

cos
 (27) 
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 (28) 

knotminor DD    (29) 

1v
DD knot

major
cos

  (30) 

where:
Dknot =  diameter of knot in log from Eq. [18] 
Dlong = diameter in longitudinal direction 
Dtang = diameter in tangential direction 
Dminor = minor axis of ellipse 
Dmajor = major axis of ellipse 

Fig. 17. Notations used when calculating knot diameters. 
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Afterwards the knot type is classified following the Nordic Timber Grading rules and the 
diameter used for grading is set (Table 1). 

Table 1. Knot types and corresponding diameters. 

Index Type Criteria Diam 
1 Round Default 2majorminor DD
2 Spike 3minormajor DD 6majorminor DD
3 Splay Knot axis outside 

of sawn surface 
3majorminor DD

4 Edge Knot on edge side
tangD

The calculated diameter is finally reduced with the part of the knot that is outside the sawn 
surface (Splay and Edge knots). 

Edging
Edging of side boards is value optimized. It is not truly optimizing but evaluates a number of 
edging solutions and selects the one giving the highest value. The edging patterns are built upon a 
straight line through a butt-end point and a top-end point on the board’s outer face. These points 
are located at each end of the longest continuous sawn surface area but not closer to butt-end 
than 200 mm and not closer to top-end than 1000 mm. The points are positioned at the centre of 
the tangential profiles’ sawn surface. At the outermost loop, the position of the top-end point is 
varied sideways between -MaxOffset  mm to +MaxOffset mm with Step mm increments. An inside 
loop varies the butt-end position in analogy. At each combination of end points an inner loop is 
evaluating possible cut widths centred by the end points. Each width cut is evaluated by a 
combined trimming and grading module. At the module wane and knots on the outer face are 
considered while knots on the prospective edges are not as these are considered hidden until the 
actual edging. The resulting values from all positions and widths are compared and the setting 
predicting the highest value is chosen. Finally the edged board is passed to the trimming and 
grading stations and this time knots on all sides are considered. Thus, the final length and grade 
may deviate from the predictions made when evaluating edging patterns. In Table 2 edging 
patterns are evaluated on a side board with MaxOffset = 10 mm and Step = 10 mm. In Fig. 18 the 
profile of the board is shown together with the best solution. 
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Table 2. Evaluation of edging patterns on a side board. Best solution is indicated by bold text. 

Offset top Offset butt Width Length Value Grade 
(mm) (mm) (mm) (mm) (SEK)  

      
-10 -10 75 2100 8.98 A 
-10 -10 100 0 0.00 OffG 
-10 0 75 2100 8.98 A 
-10 0 100 0 0.00 OffG 
-10 10 75 2100 8.98 A 
-10 10 100 0 0.00 OffG 

0 -10 75 2400 10.26 A 
0 -10 100 0 0.00 OffG 
0 0 75 2700 11.54 A 
0 0 100 0 0.00 OffG 
0 10 75 3600 15.39 A 
0 10 100 0 0.00 OffG 

10 -10 75 2700 11.54 A 
10 -10 100 1800 4.79 B 
10 0 75 2700 11.54 A 
10 0 100 0 0.00 OffG 
10 10 75 1800 7.70 A 
10 10 100 0 0.00 OffG 
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Fig. 18. Outer face as made up of the array of SideProfile. Thick solid lines are wane_start and wane_stop
Thin solid lines are face_start and face_stop. Dashed lines are the best edging solution from table 2. Plus signs 
are the end-points from which possible edging patterns are built.  

Trimming
The trimming and grading of boards is value optimized. At each end of board there is a 
minimum trimming. Between these points the algorithm finds the product specified by thickness, 
width, length and grade that yields the highest value. There is a Step parameter (default 10 mm) 
controlling the discretation of possible cuts investigated. The first step is to pre-process the 
quality features into bitfields for fast searching of the best alternative. A quality feature at a given 
longitudinal position is defined by a 32 bit integer (Q). A set bit in Q indicates the quality the 
board holds at that longitudinal position and the position of the set bit gives the quality index 
corresponding to the quality definition file. E.g. board holds quality 2 and 3 at a specific position. 
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Then the Q becomes 22 + 23 = 12 and binary 0100 OR 1100 = 1100. Q = 30 indicates that 
qualities 1-4 are applicable. The used system limits the maximum number of qualities to 32.  

For each board side, an array of knotSizeQ is set for knot size and an array of 
waneSizeQ is set for wane size. Next procedure is an AND operation at every longitudinal 
position on knotSizeQ and waneSizeQ with all board sides into a common boardQ. Along with this 
boardQ array, an array is set holding the longitudinal distance where the board has same quality. 
The other features considered are knot sum and wane length. Knot sum is knot diameters 
summed over 1000 mm board length. First an array of accumulated knot sums is prepared from 
butt-end to top-end of board on all sides. From this an array of knotSumQ is built on every board 
side starting at butt-end +1000 mm and ending at top-end. The arrays of the four sided then are 
AND:ed together into an array giving knotSumQ of the board at different positions. The wane 
length is preprocessed into an array of accumulated lengths. If wane at a given longitudinal 
position is larger than 3 mm then a length equal to the Step is added. Finally the best cutting 
alternative is searched for by evaluating all possible cuts defined by board lengths given by price 
list. The search starts at the stage from butt-end given by minimum board length found in price 
list + minimum trimming. Stage is incremented in steps defined by Step parameter. At a stage 
possible products with the current board’s thickness and width are evaluated. Products are laid 
out from stage towards butt-end. If quality of a product is consistent with the quality of the 
board segment the value is calculated. At evaluation knot sum and wane length are also 
considered. The cut giving the product with highest value is finally chosen for trimming. Is 
should also be noted that the Nordic Timber Grading rules allow the inside face to be one grade 
worse than the other sides. This is accounted for by a one bit right shift of Q at inside prior to 
the AND operations building the boardQ.
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INTRODUCTION 
The sawmill simulation software Saw2003 hosts a VBS-engine (Visual Basic Script) which means that any VB-script can be loaded to and run by 
Saw2003. Furthermore, the software in it self exposes a lot of its functionality to VBS. Taken together, any user can compile a script for automating 
sawing simulations, without having to recompile the actual C++ source code, and run it through the software. 
A complete manual for VBS standard functionality can be downloaded from Microsoft. Search for scrdoc56en.exe. Additionally, the Windows script 
components must be installed on the computer, file scripten.exe. However, this file is installed as an integrated part of Internet Explorer. It is also 
very helpful to have the script debugging facilities installed, ie401dbg.exe. All files can be found at 
http://msdn.microsoft.com/library/default.asp?url=/downloads/list/webdev.asp for download. 

CLASS DESCRIPTIONS 
Properties, methods and functions of all classes are listed in alphabetical order. Note that the class name can differ from the name of an instance. 

Properties
Properties are described by its type and assignment. Types are int for integer, double for floating point variables, string for text and obj for objects 
(classes). Assignment is either R, or L and R. R means that the property can be on the Right side of an assignment, i. e. the variable can be read. L 
means that the property can be on the Left side of an assignment, i. e. the variable can be set. 

Methods
A method performs some action but do not return a value. The methods can take arguments. In the listing arguments are prefixed with int_, dbl_ or 
str_ indicating the type. Where there are ambiguities on the scale, arguments are postfixed with the units e.g. _mm for millimetre. Arguments in a 
method is never enclosed with parentheses, e. g. SawMill.Log.CutLog 0, 3550.

Functions
Function are similar to methods but returns a value. The arguments of a function must be enclosed within parentheses whenever the returned value is 
used. Whenever the return value is not used the function acts as a method and should not have parentheses, e.g.  
SawMill.Log.Load 3, 1, 2   Load log but do not check return value 
If SawMill.Log.Load(3, 1, 2) Then … Load log and check return value 
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Angle
A slice is described of 360 Angles. Each Angle holds the extension of the log in the given direction and with the pith as origin. 
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Instances SawMill.Log.Slice().Angle()

Angle     
Properties Type Assign. Description Example 
Deg int R Degrees  

HWRad double R Radius in mm of heart wood  

HWRadX double R X-coordinate of heart wood   

HWRadY double R Y-coordinate of heart wood  

LogRad double R Radius in mm of log surface  

LogRadX double R X-coordinate of log surface  

LogRadY double R Y-coordinate of log surface  
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Board
A Board resulting from sawing a log. 

Instances SawMill.Products.CantBoard()
SawMill.Products.DealBoard()

Board     
Properties Type Assign. Description Example 
InSide obj BoardSide R Pith side of board set boardSide = 

Products.CantBoard(0).InS
ide

boardSide now references pith side of first 
board from first saw 

LeftEdge obj BoardSide R Left edge when viewed from top end 
and with sap wood side facing up 

nProfiles = 
Board.LeftEdge.ProfileCou
nt

Get the number of profiles (geometry) of 
boards left edge 

Length double R Length prior to trimming (mm) cutOff = Board.Length – 
Board.TrimmedLength

Total length trimmed off 

MC int L,R Moisture content of board. Defaults to 
18%. To be used with cost assessments 

Board.MC = 12 
Moisture content of board now set to 12% 

OutSide obj BoardSide R Sap wood side of board 

RawThickness double R Thickness raw measure (mm) 

RawWidth double R Width raw measure (mm) 
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RawVolume double R Volume raw 

RightEdge obj BoardSide R Right edge when viewed from top end 
and with sap wood side facing up 

SheetName string R Name of price sheet (product name) qual = Board.SheetName 
qual now holds the product name of the 
board

Thickness double R Board thickness (mm) thick = Board.Thickness 

TrimmedLength int R Length of trimmed board (mm) txt = txt & “Length=” & 
Board.TrimmedLength

Add board length to string txt 

Type string R Board type. “s” if side board, “c” if 
centre board 

If brd.Type == “s” Then 
Edger.Edge brd 

If board is a side board then edge it 

Value double R Board value (SEK) totValue = totValue + 
brd.Value

Add board value to totValue 

Width double R Board width (mm) txt = “Width=” & 
Board.Width

Write width to string txt 

Volume double R Board volume (m3) txt = txt & “Volume=” & 
Board.Volume

Add board volume to string txt 
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DistToEdg

DiamLon

DiamTang 

DiamMino

DiamMajo

RotationAngle

PosLong 

PosTang 

BoardKnot
BoardKnot is the description of a knot on a BoardSide. 

Instances .OutSide.Knot()
.InSide.Knot()
.LeftEdge.Knot()
.RightEdge.Knot()
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BoardKnot     
Properties Type Assign. Description Example 
Diam double R Knot diameter as used for grading   

DiamLong double R Knot size in longitudinal direction  

DiamMajor double R Major axis in mm  

DiamMinor double R Minor axis in mm  

DistToEdge double R Knot pith’s distance to nearest edge  

DiamTang double R Knot size in tangential direction  

PlaneAngle double R Inclination of knot axis to board plane  

PosLong double R Position in longitudinal direction. Butt end  = 0.  

PosTang double R Position in tangential direction. Left start of face = 0.  

PosX double R Coordinate of knot pith in 3D space  

PosY double R Coordinate of knot pith in 3D space  

PosZ double R Coordinate of knot pith in 3D space  

RotationAngle double R Orientation of major knot axis  

Sound Boolean  Boolean. True if sound knot.  

Type int R Type of knot  

0 = not defined 
1 = round 
2 = spike
3 = splay 
4 = arris 
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BoardSide
Side of a board, can be OutSide, InSide or LeftEdge, RightEdge.

Instances SawMill.Products.CantBoard()/.Products.DealBoard()
.OutSide
.InSide
.LeftEdge
.RightEdge

BoardSide     
Properties Type Assign. Description Example 
Knot(int_index) obj BoardKnot R Get a BoardKnot kn = Knot(0) 

Get the first BoardKnot on side 

KnotCount int R Number of knots on board side knNr = KnotCount 
knNr is the number of knots on board side 

Name string R Name of board side name = Board.InSide.Name 
name is now “InSide” 

Profile(index) obj SideProfile R Get a SideProfile set sp = 
Board.InSide.Profile(1)

Gets the 2:nd SideProfile 

ProfileCount int R Number of SideProfiles For spNr = 0 To Board.LeftEdge 
.ProfileCount-1

 sp=Board.LeftEdge 
 .Profile(spNr) 
Next
Iterate through all SideProfiles of LeftEdge 
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BuckLog
The BuckLog class represents logs resulting from simulated bucking of a stem by a harvester.

Instances BuckStation.BuckLog()

Class     
Properties Type Assign. Description Example 
DiamButt int R Butt end diameter (mm)  

DiamClass int R The diameter class in the log price list 
matching the log 

DiamMid int R Diameter of log at middle position (mm)  

DiamTop int R Diameter of log at top position (mm)  

Length int R Length of log (mm)  

LengthClass int R The length class in the log price list 
matching the log 

Sort string R Name of the assortment as given in log 
price list 

SumValue double R Value sum of all logs up to and including 
this

TopPos int R Position of top end within stem  

TopVolume double R Volume by top measure if basis for 
pricing (m3to)

Volume double R Solid volume of log (m3fub)  
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BuckStation
The BuckStation class simulates bucking by a harvester. That is: Bucking rules are defined by a log price list following the StanForD description for 
Apt-files, Stem is considered 2-Dimensional (diameters and length). 

Instances BuckStation

BuckStation     
Properties Type Assign. Description Example 
BuckLog(int_index
)

obj BuckLog R Retrieve a BuckLog object  

BuckLogsCount int R Gets number of BuckLogs resulting 
from a call to Buck(stem) 

Discretation int L,R Resolution of cut positions (mm)  

OK Boolean R Boolean. True if a StanForD apt-file is 
loaded

SDev double L,R The standard deviation of random errors 
on stem’s diameter 

Methods    

Buck(obj_stem)   Bucks the given stem  

Functions Return type 

LoadStanForD(
str_path)

Boolean R Loads an apt-file  
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Bump
The Bump class holds the proportion of a log’s bumpiness in the current interval. 

Instances SawMill.Log.Bumps.Bump()

Bump     
Properties Type Assign. Description Example 
Name string L,R Name of the instance formatted as Bu0-

5
PutInfo
SawMill.Log.Bumps.Bump(1)
.Name

Writes the name of 2:nd bump object 

Proportion double R Proportion of log with bumpiness in the 
interval of the object 
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Bumps
The Bumps class is a placeholder for the distribution of bumps on a log. In order to work, bumpiness data files must be present in the stem bank file 
directories. Bumpiness grouping is enabled by a setting Log.ProcessBumps=true.

Instances SawMill.Log.Bumps

Bumps     
Properties Type Assign. Description Example 
Bump(int_index) obj Bump R Gets Bump object with index prop05=Bumps(0).Proportion

Get the proportion of log with bumpiness 
(0-5). Actual interval is set up with Init. 

Count int R Number of Bump objects nBumps=Bumps.Count

Methods    

Init(str_init)   Initialize bump intervals Bumps.Init(“0-5,5-10,10-
20,20-50”)
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CantSaw
The CantSaw object is the first saw. The saw cuts a block which can be further processed by the DealSaw. To access properties and methods of the 
CantSaw, add SawMill.CantSaw. to the code examples below. Several class attributes are common in both CantSaw and DealSaw and thus presented after 
the DealSaw class. 

Instances SawMill.CantSaw

CantSaw     
Properties Type Assign. Description Example 
AutoHornsDown Boolean L,R True if AutoHornsDown is enabled AutoHornsDown = False 

Log will now be sawn with current 
rotation

Rotation int L,R Rotation of the log Rotation = 15 
Sets the log rotation to 15 degrees 

Methods    

HornsDown   Rotate the log horns down (crook up) HornsDown
Log is now rotated horns down 
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CantSaw/DealSaw
These attributes exists in both saws. Note that they can be set independently in each class 

Instances SawMill.CantSaw
SawMill.DealSaw

CantSaw/DealSaw     
Properties Type Assign. Description Example 
AutoCenter Boolean L,R True if automatic centring of log/block 

is enabled 
bAC = AutoCenter 
bAC is now False if AutoCenter is 
disabled

Back obj CentrationUnit R The rear centring unit Back.DistToSaw = 3000 
Distance set to 3000 mm 

Front obj CentrationUnit R The front centring unit Front.DistToSaw = 1000 
Distance set to 1000 mm 

Knots Boolean L,R If False, no knots will set on boards Knots = False 
Turn off knots descriptions 

SawBladeWidth double L,R Saw kerf sbw = SawBladeWidth 
Gets the thickness of the saw blade 

SawAllowance double L,R Adds to the nominal width or thickness 
of boards (mm) 

SawAllowance = 1.0 
Boards will be cut 1.0 mm thicker or 
wider than calculated from shrink 
allowance.

ShrinkAllowance double L,R Factor for calculating raw board ShrinkAllowence = 1.025 
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dimensions A block with 100 mm nominal width will 
be cut to 102.5 mm raw + SawAllowance. 

Methods    

SetLogPos(
int_Parallell_m
m, int_Skew_mm) 

  Sets the log position relative to the 
centred position 

SetLogPos(-10, 0) 
Log is parallel displaced -10 mm 

   

CentrationUnit
Each saw has two units responsible for positioning of the log/cant. Using the same offset in both units the log is parallel displaced. With different 
offsets the log is skewed.

Instances SawMill.CantSaw/SawMill.DealSaw
.Front
.Back

CentrationUnit     
Properties Type Assign. Description Example 
DistToSaw double L,R Distance to saw centre (mm)  

Offset double L,R Offset of log at CentrationUnit where 0 
is the centred position (mm) 
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Cost
Costs are calculated on log level. A valid cost file must be loaded and the post list must have sawing speeds(m/min) and log gaps(mm). Cost are 
calculated when SumCost is explicitly called. 

Instances SawMill.Cost

Cost     
Properties Type Assign. Description Example 
Drying double R Cost of drying  

FileName string R Path of cost file  

LogSorting double R Cost of log sorting  

OK Boolean R Boolean. True if cost file is loaded  

Sawing double R Cost of sawing operation including raw 
sorting and edging

Trimming double R Cost of trimming  

Functions Return type    
Load(str_path) Boolean    

SumCost(
obj_post,
obj_log,
obj_prod)

double R Calculates costs. Must be called prior to 
accessing any properties 

sumCost=SawMill.Cost.SumCos
t(
SawMill.Post,
SawMill.Log,
SawMill.Products)

All cost properties have been calculated 
and the sum is stored in sumCost 
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Crook
The Crook class holds a description of the log’s crook properties. 

Instances SawMill.Log.Crook

Crook     
Properties Type Assign. Description Example 
Angle int R Direction of crook (deg)  

Bow int R Maximum bow height (mm)  

Position int R Position of maximum bow, butt end = 0 
(mm)

    

DealSaw
The DealSaw is the second sawing machine which cuts the block (cant) into boards. Several class attributes are common in both CantSaw and DealSaw
and thus presented after the DealSaw class. 

Instances SawMill.DealSaw

DealSaw     
Properties Type Assign. Description Example 
CurveSaw Boolean L,R True if curve sawing is enabled CurveSaw = False 

Block will not be curve sawn 
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Edger
The Edger object performs the edging of sideboards by searching for the optimal value. During optimization the centre of the saw line is moved to 
different positions at the top end  and butt end of the face independently. The maximum offset from the mid position is specified by the Offset 
property and the line is moved in steps given by the Step property. At each positions all possible widths of the board is evaluated.

Instances SawMill.Edger

Edger     
Properties Type Assign. Description Example 
MaxOffset int L,R The limits of the centre line when 

searching for the optimal edging of the 
boards

MaxOffset = 10 
Max offset is set to 10 mm 

Step int L,R The discretation when positioning the 
centre line 

Step = 10 
The centre line will be moved in steps of 
10 mm 

Methods    

2 x Offset

Step

Saw line centres 
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Edge(obj_board)   Edges a board Edge brd 
Edges board brd 

Knot
The Knot class holds properties for a single knot as given by the StemBank. Must not be confused with BoardKnot.

Instances SawMill.Log.Knot()

Knot     
Properties Type Assign. Description Example 
A double L,R Knot parameter A  

B double L,R Knot parameter B  

C double L,R Knot parameter C  

D double L,R Knot parameter D  

E double L,R Knot parameter E  

F double L,R Knot parameter F  

G double L,R Knot parameter G  

H double L,R Knot parameter H  

I double L,R Knot parameter I  

J double L,R Knot parameterJ  

K double L,R Knot parameter K  

Scale double L,R Scale of knot parameters (mm/pixel)  
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Methods    

PostCreate   If any of the knot parameters have been 
altered, call post create to execute some 
internal recalculations. 

Functions Return type    
Diam(dbl_r_mm) double R Get knot diameter at postion r mm from 

pith (mm) 

End double R Get the end of knot in mm from pith  

Height(dbl_r_mm) double R Get height position in tree at r mm from 
pith

Rotation(dbl_r_mm
)

double R Get rotational angle at postion r mm 
from pith 

SoundEnd double R Get the position where knot becomes 
dry, in mm from pith 

TanAngle(dbl_r_mm
)

double R Get knot diameter in radians at postion r 
mm from pith 

LdbLog
This class is to reference log files in the SPSB. Must not be confused with the Log class that is used for loading and holding actual log data. 

Instances SawMill.StemBank.Plot().Tree()
.Log()
.LogNr()

LdbLog     
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Properties Type Assign. Description Example 
Name string R The full path to the log geometry file path = SawMill.StemBank 

.PlotNr(51)

.TreeNr(1)

.LogNr(2).Name
The path to log 2 from tree 1 on plot 51 

Nr int R Log nr as extracted from file name  

Log
The Log object holds the currently loaded log. It is capable of reading log descriptions from files as well as complete stems. 

Instances SawMill.Log

Log     
Properties Type Assign. Description Example 
Bumps obj Bumps R Bumpiness of log. Prerequisites are 1) 

ProcessBumps = true before loading log. 
2) Bumpiness data available in the 
StemBank

Bumps.Init “0-10,10-20,20-
100”

Bumps will be distributed among these 
three intervals. 

Crook obj Crook R Holds the log’s crook attributes Log.Crook.Bow
Gets the log’s bow height 

FirstSliceNr int R The index of the first slice of a cut log sliceNr = FirstSlice 

Knot(int_index) obj Knot R Retrieve Knot by nr. set k = Log.Knot(47) 
k now references the 48:th knot of log 

KnotCount int R Number of knots in log For k = 0 To 
Log.KnotCount-1
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Iterate through all knots 

LastSliceNr int R The index of the last slice of a cut log sliceNr = LastSliceNr 

Length int R Length of (cut) log in mm length = Log.Length / 10 
length is now log length in cm 

LogNr int R Log number in SPSB 

OK Boolean R Boolean. False when no log is loaded if(Log.OK)
Is a log loaded? 

PlotNr int R Logs plot origin in SPSB str = Log.PlotNr 
str now has the plot number 

Rotation int L,R Log rotation  Log.Rotation = 25 
Set log rotation to 25 degrees 

ScaleFactor double R Scale factor of the log geometry source 
file (mm/pixel) 

sf = Log.ScaleFactor 

Slice(int_index) obj Slice R Retrieve Slice nr. First slice is indexed 0. set slice = Log.Slice(10) 
slice now references the 11:th slice 

SortDiam double R Diameter of log used for automatic 
selection of breakdown pattern when 
enabled

sd = SortDiam 
sd now is the average Eq-diameter of log 
in the 150 to 50 mm from topend. 

StartHeight int R Log cutting position sh = Log.StartHeight 
butt position of cut log in the tree/log 

StopHeight int R Log cutting position sh = Log.StopHeight 
top position of cut log in the tree/log 

TreeNr int R Tree number in SPSB str = Log.PlotNr 
&Log.TreeNr &Log.LogNr 
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str now contains complete ID of log. 

Volume double R Log volume in m3fub vol = 1000 * Log.Volume 
Get log volume in litres

Methods    

CutLog(
int_startPos_mm
,
int_stopPos_mm)

  Cut log/tree CutLog(1000, 4400) 
A 3400 mm long log is cut from the 
loaded log/tree 

Functions Return type    
CrossDiam(
int_pos_mm,
int_angle_deg,
int_relativeTo)

double R Diameter of the log, in the specified 
direction, at pos from end (relativeTo, 1= 
top end, 2=butt end) 

diam = Log.CrossDiam(100, 
90, 1) 

Gets diameter 100 mm from top of log 
in the vertical direction 

EqDiam(int_pos,
int_relativeTo)

double R Diameter of log derived from the cross-
section’s area (relativeTo, 1= top end, 
2=butt end) 

diam = Log.EqDiam(100, 1) 
Gets the equivalent diameter 100 mm 
from top end of the log 

Load(int_plot,
int_tree,
int_log)

Boolean R Load a log from SPSB. Returns True if 
successful

bSuccess = Load(51,1,1) 
Load log 1 from tree 1 on plot 51 

LoadGeometryFile(
str_path)

Boolean R Load any log geometry file. Returns True 
if successful 

bSuccess = 
loadGeometryFile(“c:\
data\logs\mylog1.txt”)

Load geometry file mylog1.txt 

LoadKnotFile(
str_path)

Boolean R Load any knot parameter file. Returns 
True if successful 

bSuccess = 
loadKnotFile(“c:\data
\logs\myknots1.txt”)
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Load knot file myknots1.txt 

LoadTree(plot,
tree)

Boolean R Loads a tree. Merges logs belonging to 
same tree. Returns True if successful. 

bSuccess = LoadTree(1, 2) 
Loads tree 2 on plot 1 

MinDiam(int_pos_m
m,
int_relativeTo)

double R Minimum diameter of log at pos mm from 
end (relativeTo, 1= top end, 2=butt end) 

minD = Log.MinDiam(100,1) 
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OrderBook
The OrderBook is used for production control. By defining desired share of specified products in an order file the OrderBook tries to meet the demand 
by adjusting prices on the targeted products. 

Instances SawMill.OrderBook

OrderBook     
Properties Type Assign. Description Example 
Active Boolean L,R Boolean. Turn on/off production 

control
OrderBook.Active=True
Enable production control 

DefaultPriceCoeff
icient

double L,R Initial price coefficient OrderBook.DefaultPriceCoeff
icient=120

Start with prices 20% higher than given by 
price list 

FileName string R Loaded OrderBook file path. PutInfo OrderBook.FileName 
Writes file name to InfoView 

Lambda double L,R Step control parameter OrderBook.Lambda = 0.1 
Sets the step control to 0.1 

MaxPriceDeviation double L,R Maximum allowed deviation from price 
given by price list 

OrderBook.MaxPriceDeviation
=30

Prices can differ ± 30% from price given 
by price list 

Prod(int_index) obj OrderProd R Access to OrderProd objects (products 
controlled)

OrderBook.Prod(0).ProdVolSh
are

Currently produced volume share of 
product 0 
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ProdCount int R No of products controlled For i=0 To 
SawMill.OrderBook.ProdCou
nt-1

Iterate over the controlled products 

Volume double R Total volume produced 

Methods    

AddDistProducts(
obj_QualDist)

  Add production of distributed products OrderBook.AddDistProducts(S
awMill.QualDist)

Adds fraction of products as given by 
QualDist

AddProducts(obj_P
rod)

  Add production OrderBook.AddProducts(SawMi
ll
.Products)

Adds products from last sawing operation 

UpdateCoefficient
s

  Adjust price coefficients OrderBook.UpdateCoefficient
s

New price coefficients will be calculated 
based on development of order book since 
last update 

Functions Return type 

Load(str_Path) Boolean R Load an order book file SawMill.OrderBook.Load
“MyOrderBook.txt”
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OrderProd
OrderProd is the product under production control. Product is either controlled by number of boards or by volume share. Never both at the same time. 
It is recommended to control by volume share since this is well tested. 

Instances SawMill.OrderBook.Prod()

OrderProd     
Properties Type Assign. Description Example 
Coefficient double L,R Price coefficient in percent of the price 

given by price list 

Length double R Length of product OrderBook.Prod(1).Length=42
00

Change the length of the product under 
control

OrdNo double L,R Ordered number of boards 

OrdVolShare double L,R Ordered volume share of product (‰)  OrderBook.Prod(1).OrdVolSha
re=10

Change ordered volume share to 10 per 
mille

ProdNames string R Allowed products in group str=OrderBook.Prod(1).ProdN
ames

Product names matching price lists 

ProdNo double R Produced number of boards 

ProdVolShare double R Produced volume share (‰) 

Thickness double L,R Thickness of product (mm) thick=OrderBook.Prod(0).Thi
ck
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Get the thickness of the 1:st product 

Width double L,R Width of product (mm) width=OrderBook.Prod(0).Wid
th

VolCtrl Boolean L,R Boolean. True of volume is controlled. 
False if number of boards are targeted 

Volume double L,R

   

Plot
The Plot class gives a structured access to the files in the SPSB.  

Instances StemBank.Plot()
StemBank.PlotNr()

Plot     
Properties Type Assign. Description Example 
Name string R The file directory 

Nr int R The Plot nr as extracted from directory 
name in SPSB 

Tree(int_index) obj Tree R Gets Tree by index (ordinal) set tree = 
StemBank.Plot(0).Tree(0)

tree now references the first tree on the 
first plot in the stem bank 

TreeCount int R Number of Trees on plot nTrees = Plot.TreeCount 
Gets the total number of trees on the Plot 
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TreeNr(int_nr) obj Tree R Gets Tree by its number set tree = SawMill.StemBank.PlotNr(51) 
.TreeNr(1)

tree now references the tree with the given 
identity 1 on plot 51 

Post
The Post class holds a break down pattern with associated data. 

Instances SawMill.Post
SawMill.PostList.Post()
SawMill.PostList.PostDiam()

Post     
Properties Type Assign. Description Example 
CantCut(int_index
)

obj PostCut R Retrive a PostCut object. Zero based 
index.

Post.CantCut(0).Thick
Thickness of first cut in CantSaw 

CantCutCount int R Nr of cuts in CantSaw nr = CantCutCount 

DealCut(int_index
)

obj PostCut R Retrive a PostCut object. Zero based 
index.

Post.DealCut(2).Type
Type of board of 3:d cut in DealSaw 
(‘s’=sideboard or ‘c’=centreboard ) 

DealCutCount int R Nr of cuts in DealSaw nr = DealCutCount 

ID int R ID nr as given in the postlist file idnr = SawMill.Post.ID 

LogGap int L,R Log gap in mm. To be used together 
with cost assessments. 

Post.LogGap = 550 
Log gap now is 550 mm 

MaxDiam int L,R Max diameter of logs to be cut with the 
Post

If SawMill.Log.EqDiam(100, 
1) <= 
SawMill.Post.MaxDiam
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Check if log diameter is less than the given 
max diam 

MinDiam int L,R Min diameter of logs to be cut with the 
Post (mm) 

minD = Post.MinDiam 
Get the minimum log diameter for the 
Post

Name string L,R The name given in the postlist file Post.Name = “MyPost” 
Sets the name of the post to MyPost 

Nr int L,R A running index of Posts  nr = Post.Nr 
Gets the ordinal of Post in the PostList 

SawLine int L,R An index which can be used to process 
logs with different setups based on Post 
selected

SelectSawLine Post.SawLine 
Run user defined subroutine to set up saw 
based on saw line given in post. 

SawSpeed int L,R Processing speed of saw with that 
pattern (m/min) 

SumCantWidth int R Sum of all cuts in the CantSaw (nominal 
mm)

width = Post.SumCantWidth 
Get the total width. 

SumDealWidth int R Sum of all cuts in the DealSaw (nominal 
mm)

width = Post.SumDealWidth 
Get the total width. 

PostCut
The PostCut holds the thickness and boardtype of one cut in a Post. 

Instances SawMill.Post/SawMill.PostList.Post()/SawMill.PostList.PostDiam()
.CantCut()
.DealCut()
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PostCut     
Properties Type Assign. Description Example 
Thick int L,R Thickness of cut (mm) If Post.CantCut(0).Thick = 

19 Then … 
Special processing for boards with 
thickness 19 mm. 

Type string L,R Board type 
(“s”=side board, “c”=centre board, 
“b”=block)

Post.DealCut(2).Type
Type of of 3:d board cut in 
DealSaw

PostList
The PostList holds a list of sawing patterns. 

Instances SawMill.PostList

PostList     
Properties Type Assign. Description Example 
Count int R Number of posts in list nr =PostList.Count 

Gets the number of posts in list 

FileName string R Path of loaded file name = PostList.FileName 
Get the path of the loaded file 

OK Boolean R Boolean. True if a list is loaded if PostList.OK 
Is a post list is loaded 

Post(int_index) obj Post R Gets the Post specified by the zero-based 
index

post = PostList.Post(0) 
Sets a reference to the first post 

PostDiam(int_inde
x)

obj Post R Gets a Post from array filled with posts 
selected after a call to PostDiamCount 

PostList.PostDiamCount(155)
post = PostList.PostDiam(0) 
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Gets the first post where log diam 155 
mm is within min/max limits 

Functions Return type    
Load(str_filename
)

Boolean R Loads a post list file. Returns True if 
successful.

PostList.Load
“MyPostList.txt”

Loads the post list file “MyPostList.txt” 

PostDiamCount(
dbl_diam_mm)

int R Gets the number of posts where diam is 
within min/max limits and fills the array 
PostDiam

nPosts = 
PostList.PostDiamCount(15
5)

Get the number of posts applicable for a 
log with diameter 155 mm 

PriceList
The PriceList gives the individual value of all feasible combinations of width, length and thickness. The prices are organized in price sheets, one sheet 
per product. 

Instances SawMill.PriceList

PriceList     
Properties Type Assign. Description Example 
ChipPrice double L,R Price of by-products per solid m3 PriceList.ChipPrice = 215 

Sets the chip price to 215/m3 

FileName string R Name of loaded file name = PriceList.FileName 
Get the path of the loaded file 

OK Boolean R Boolean. False if no list is loaded isOK = PriceList.OK 
if isOK = True, a price list is loaded 
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PriceSheet(int_in
dex)

obj PriceSheet R Gets the PriceSheet specified by the 
zero-based index 

set ps = 
PriceList.PriceSheet(1)

Sets a reference to 2:nd price sheet 

PriceSheetByName(
str_name)

obj PriceSheet R Gets PriceSheet by its name set ps = 
PriceSheetByName(“A-s”)

Sets a reference to the price sheet with 
name A-s 

SheetCount int R Number of price sheets count = 
PriceList.SheetCount

Functions Return type    
Load(filename) Boolean R Loads a price list file. Returns True if 

successful.
PriceList.Load “Prices 
August 03.txt” 

Loads the price list file “Prices August 
03.txt”

PriceSheet
The PriceSheet gives the individual value of all feasible combinations of width, length and thickness for a certain quality.  

Instances SawMill
.PriceList.PriceSheet()
.PriceList.PriceSheetByName()

PriceSheet   Description Example 
Properties Type Assign.   
BasePrice double L,R The base price of the quality (SEK/m3) bp = 

PriceList.PriceSheet(0).B
asePrice
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Get the base price of the first sheet 

Index int R The feasible qualities as given by the 
quality definition. The Index is or:ed 
2^qindex.

index = Index 
If index now is 6 than qualities 1 and 2 are 
allowed (2^1 + 2^2) 

Name string L,R Name of price sheet PriceSheet.Name = “Box” 
The name is now Box 

Methods    

   

Functions Return type    
Price(int_thick_m
m,
int_width_mm,
int_length_mm)

double R Get the price of a board with the 
specified dimensions 

value = GetPrice(50, 100, 
4200)

Gets the value of a board with the given 
dimensions. If the board is not found, 
value will be 0. 
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Products
The Products class holds the resulting boards after sawing a log.  

Instances SawMill.Products

Products     
Properties Type Assign. Description Example 
BoardValue double R Total value of all boards having a 

grade (SEK) 

CantBoard(int_ind
ex)

obj Board R Gets a board sawn in first saw thick = CantBoard(0).Thickness 
Gets the thickness of first board 

CantBoardCount int R Number of boards from first saw. 
Number includes the block 

nBoards = SawMill.Products 
.CantBoardCount

Get the number of boards from first saw 

ChipValue double R Value of chips (SEK) val = val + Products.ChipValue 
Add chip value to val 

ChipVolume double R Volume of chips (m3) vol = ChipVolume 
Get chip volume 

DealBoard(int_ind
ex)

obj Board R Gets a board sawn in second saw value = DealBoard(1).Value 
Get value of 2:nd board from second saw 

DealBoardCount int R Number of boards from second saw nBoards = DealBoardCount 
Get the number of boards from first saw 

Value double R Total value of log (SEK) If Value <> Boardvalue + 
ChipValue

Should be equal, something is wrong 
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Yield double R Volume yield from sawing log in % str = “Yield “ & 
FormatNumber(Products.Yield,1
)

Writes yield to string with one decimal digit 

Methods    

SetSums   Sums up board values and calculates 
yield and chip properties. Necessary 
if boards have been altered after a 
DoSaw operation 

QualBoard
A QualBoard is a board that has been trimmed with a pre-set knot quality. However, wane properties may be determining a lower quality of the board. 

Instances SawMill.QualDist.Quality().Board()

QualBoard     
Properties Type Assign. Description Example 
SheetName string R Name of price sheet that the board was 

priced by. 

Thickness double R Thickness of board (mm)  

TrimmedLength double R Final length of board (mm)  

Value double R Value of board  (SEK)  

Width double R Width of board (mm)  

Volume double R Volume of board (m3)
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QualDist
The QualDist object holds distribution of qualities. Set the proportion of each grade in the Quality array before calling DoSaw. In the sawing operation 
of a log each centreboard is trimmed with all qualities in the Quality array. The summed value of centreboards is calculated. 

Instances SawMill.QualDist

QualDist     
Properties Type Assign. Description Example 
Active Boolean L,R Boolean. Turn on/off assessment of 

boards with grades given by QualProp 
objects

Quality(int_quali
ty)

obj QualProp R Access a QualProp object by quality 
index

SawMill.QualDist.Quality(1)
.Proportion=0.2

Sets the proportion of grade 1 to 0.2 

Value double R Summed value of centre boards 

Volume double R Summed volume of centre boards 
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QualProp
QualProp holds resulting centre boards trimmed and graded with the current knot quality.  

Instances SawMill.QualDist.Quality()

QualProp     
Properties Type Assign. Description Example 
Board(int_index) obj QualBoard R Access a QualBoard object.  

BoardCount int R Number of QualBoard  nCB=SawMill.QualDist.Qualit
y(1).BoardCount

Gets the number of centre boards that 
yielded a positive value when knot 
properties  were set to quality 1 

Index int R Quality index as given in the quality 
definition file 

Proportion double L,R Proportion of log with this quality on 
the centre boards 

prop=SawMill.QualDist.Quali
ty(1).Proportion

Get the proportion of quality 1 
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Saw2003
The sawmill simulator has an object oriented approach. The top level object is Saw2003 and this object does not have to be explicitly given in the 
script. It holds the super object SawMill. Most other classes must be accessed through the SawMill object.

Instances Saw2003
Document

Saw2003/Document   
Properties Type Assign. Description Example 
BuckStation obj  BuckStation R Object for simulating bucking by a 

harvester
BuckStation.Buck(SawMill.Log
)

Bucks a stem 

Com obj SockWnd R Sockets communication over the internet, 
(under development) 

Com.Listen(4711)
Enables communication on port 4711 

SawMill obj SawMill R The actual sawmill simulation engine Set sm = Saw2003.SawMill 
Sets a reference to the SawMill object 

Methods

ClearInfo  Clears the InfoView 

PutInfo(str_text)  Write text to InfoView PutInfo(SawMill.Post.Name)
Outputs Name of the selected pos 

ShowMsg(str_messa
ge)

 Shows a message in a pop-up messagebox ShowMsg(SawMill.Post.Name)
Outputs Name of the selected post 

UpdateViews  Refreshes the screen. May slow down the 
processing of large scripts 

SawMill.DoSaw
UpdateViews
Make sure results are reflected in the 
interface
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Functions Return type    
CreatePriceList obj PriceList R Creates a second pricelist which can be set 

to sawmill for fast switching without 
having to reload file 

set pl2=CreatePriceList 
pl2.Load “MyPL.txt” 
set pl1=SawMill.PriceList 
SawMill.PriceList=pl2
Change pricelist on the fly 

Test string R Writes “Script Test” to InfoView and 
returns “Script Test” 

s = Test 
s now contains “Script Test” 
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SawMill
The SawMill is the placeholder for all simulated machinery as well as the PriceList and PostList. The SawMill also holds the StemBank object which 
contains the parametric descriptions of the virtual logs in the SwedishPineStemBank (SPSB).

Instances SawMill

SawMill     
Properties Type Assign. Description Example 
AutoPost Boolean L,R True if AutoPost is enabled AutoPost = False 

Turning off AutoPost 

CantSaw obj CantSaw R First sawing machine SawMill.CantSaw.
SawBladeWidth = 4.5 

Set the saw kerf of the first saw to 4.5 mm 

Cost obj Cost R Object for calculating costs of sawmill 
operations

SawMill.Cost.Load
“CostFile.txt”

Load a cost-formatted text file. 

DealSaw obj DealSaw R Second sawing machine kerf=SawMill.DealSaw.
SawBladeWidth

Get the saw kerf of the second saw 

Edger obj Edger R Edging machine SawMill.Edger.Edge brd 
Edges board brd 

Log obj Log R Log loaded in sawmill SawMill.Log.Volume
Gets the volume of the current log 

OrderBook obj OrderBook R Order book for production control OrderBook.Active = false 
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Turns off production control 

Post obj Post R Sawing pattern selected SawMill.Post.MinDiam
Gets minimum diameter limit of current 
post

PostList obj PostList R The list of available posts postsNr = 
SawMill.PostList.Count

Gets the total number of posts 

PriceList obj PriceList L,R Price list of the boards SawMill.PriceList.ChipPrice
= 210 

Sets the chip price 

Products obj Products R Resulting boards after sawing a log cv = SawMill.Products. 
ChipVolume

Gets the volume of chips 

QualDist obj QualDist R Object for assessment of volume and 
value when a log yields a distribution of 
grades (e.g. A= 0.1 B=0.25 C=0.65) 

QualDist.Quality(1).Proport
ions = 0.1 

Set the proportion of grade 1 of log to 0.1 

StemBank obj StemBank R Pine Stem Bank SawMill.StemBank.
GetFileName(1,2,3)

Gets the path to plot 1, tree 2, log 3 

Trimmer obj Trimmer R Trimming machine SawMill.Trimmer.Step = 50 
Sets the discretation in the optimization to 
50 mm 

ZResolution int L,R The distance between cross section 
profiles used in sawing 

SawMill.ZResolution = 50 
With the SPSB logs every 5:th cross-
section is now used for describing board 
geometry
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Functions Return type 

DoAutoPost Boolean R Selects the first post where current log 
falls within min max limits 

bOK = SawMill.DoAutoPost 
if bOK = True post is now selected 

DoSaw Boolean R Saw current log bOK = SawMill.DoSaw 
if bOK = True log was successfully sawn 

SideProfile
The SideProfile gives a 1-dimensional view of the board side. Start positions can be higher than stop positions depending on orientation of board side in 
3D-space.

Instances .OutSide.Profile()
.InSide.Profile()
.LeftEdge.Profile()
.RightEdge.Profile()

Face

start/stop

Wane 

start/stop

Target

Start/stop
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SideProfile     
Properties Type Assign. Description Example 
CutPos double R The plane position of face in space (mm)  

FaceStart double R Start position where sawblade has 
touched the board (mm) 

FaceStop double R Stop position where sawblade has 
touched the board (mm) 

Height double R Position in log (z) (mm)  

TargetStart double R Ideal start position (mm)  

TargetStop double R Ideal stop position (mm)  

WaneStart double R Actual start of profile  (mm)  

WaneStop double R Actual stop of profile (mm)  
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Slice
Slice is the cross-section of a log. 

Instances SawMill.Log.Slice()

Slice     
Properties Type Assign. Description Example 
Angle(int_index) obj Angle R Get an Angle object, index  

AngleCount int R Number of Angles in slice. Should be 
360

Area double R Area in mm2 of cross section  

CgX double R Center of gravity, X- coordinate (mm)  

CgY double R Center of gravity, Y- coordinate (mm)  

EqDiam double R Equivalent diameter derived from area 
(mm)

Height double R Height in mm of cross-section in log. 
Butt end = 0 

MinDiam double R Minimum diameter of slice  

Nr int R Slice number, ordinal  

PithX double R X-coordinate of pith in slice  

PithY double R Y-coordinate of pith in slice  

Functions    

CrossDiam(int_ang
le)

double R Get diameter in direction given by angle  
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SockWnd
The SockWnd class is under development and is intended for communication with other applications across a computer network. Applications such as 
a log scanner or an order system for instance. 

Instances Com

SockWnd     
Properties Type Assign. Description Example 

Methods    

Listen(int_portNr
)

  Start listen for TCP/IP connections on a 
port

Com.Listen(4711)

Functions    
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StemBank
The StemBank class gives a structured access to the files in the SPSB.

Instances SawMill.StemBank

StemBank     
Properties Type Assign. Description Example 
Plot(int_index) obj Plot R Gets plot by index (ordinal) set plot = StemBank.Plot(0) 

plot now references the first plot in the 
stem bank 

PlotCount int R Number of plots nPlots = StemBank.PlotCount 
Gets the total number of plots in the stem 
bank

PlotNr(int_nr) obj Plot R Gets plot by its number set plot = SawMill. 
StemBank.PlotNr(51)
plot now references the plot with the 
given identity 51 

Functions Return type    
GetFileName(
int_plotNr,
int_treeNr,
int_logNr)

string R Get the path to a log geometry file fn = GetFileName(1,2,3) 
fn now holds the path to log 3 from tree 2 
on plot 1 
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Tree
The Tree class gives a structured access to the files in the SPSB.  

Instances SawMill.StemBank.Plot()
.Tree()
.TreeNr()

Tree     
Properties Type Assign. Description Example 
Log(int_index) obj LdbLog R Gets Log by index (order) set log = 

StemBank.Plot(0).Tree(0).
Log(0)

tree now references the first log in first 
tree on the first plot in the stem bank 

LogCount int R Number of Trees on plot nLogs = Tree.LogCount 
Gets the total number of logs in Tree 

LogNr(int_nr) obj LdbLog R Gets Log by its number set log = SawMill.StemBank. 
PlotNr(51).TreeNr(1).
LogNr(2)
log now references the log with the given 
identity 2 from tree 1 on plot 51 

Name string R Tree name as extracted from filename 

Nr int R Tree Nr as extracted from filename 
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Trimmer
The trimming machine. Responsible for grading of boards as well. 

Instances SawMill.Trimmer

Trimmer     
Properties Type Assign. Description Example 
MinTrimButt int L,R Minimum trimming length at butt end 

(mm)
Trimmer.MinTrimButt = 40 
Now at least 40 mm will be cut off from 
butt end 

MinTrimTop int L,R Minimum trimming length at top end 
(mm)

trimTop = 
Trimmer.MinTrimTop

Gets the minimum trimming length at top 
end

Step int L,R The discretation in trimming 
optimisation (mm) 

Trimmer.Step = 100 
Trimming alternatives will be evaluated at 
positions with the interval 100 mm starting 
from butt end.

Methods    

TrimBoard(obj_boa
rd)

  Trims a board, including grading. set board = Products. 
CantBoard(0)
Trimmer.TrimBoard(board)
Trim first board from first saw 








