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Abstract
This thesis deals mainly with computer simulations of wood-drying distortions, especially 
twist. The reason for this is that such distortions often appear in dried timber, and the 
results are quality downgrades and thus value losses in the wood value chain. A computer 
simulation is a way to theoretically simulate what happens in reality when moisture 
content in timber changes. If the computer simulation model is appropriate and capable of 
realistic simulations of real events, then it is possible to study what happens with the 
timber distortions if some parameters in the simulation model are changed. In that way, a 
good simulation model is a good tool to use when trying to reduce wood-drying 
distortions by altering some parameters in the process of producing timber. Computer 
simulations have the comparative advantage over real-world experiments of being 
cheaper and faster to perform, but the disadvantage that the outcome may be doubtful if 
the simulation model is bad. 

Wood is an anisotropic material that is often modelled as an orthotropic material, i.e., a 
material that has three orthogonal directions at each point with different material 
properties. A method to measure the orthotropic directions in wood nondestructively was 
the subject of paper 1. The method was to calculate the directions from the information in 
a series of two-dimensional computed tomography (CT) images. Fictitious, small 
calculation spheres were distributed in the wood material, and the principal directions of 
inertia of these spheres were calculated using the density information in the CT images. 
The principal directions were assumed to be the radial, the tangential and the fibre 
direction at the point in question. Tests of the method on three wood samples showed that 
the method works, but that there was considerable spread in the results from individual 
spheres. The spread was reduced by calculating mean values for a number of spheres in 
the vicinity of each other. 

Twist of timber depends on various influencing variables. Traditionally, a formula from 
the late 50s by Stevens and Johnston, valid for single growth ring cylinders, has often 
been used to explain which variables influence twist. One interesting influencing variable 
in this formula is the spiral grain angle; the others are the moisture content change, the 
coefficient of moisture expansion and the radius of the growth ring cylinder in question. 
However, real boards are not single growth ring cylinders, and paper 2 deals with the 
dependence of twist of realistic boards on various influencing variables. Derivations were 
made on a theoretical and analytical level of the twist of timber, and the result was a 
formula whose first term corresponds to Stevens and Johnston’s original formula; but the 
formula has also a second term. This second term is proportional to the gradient of the 
spiral grain angle and is especially important for timber sawn far from pith. The validity 
of the second term was shown by comparisons with finite element method (FEM) results 
and also with experimental results. 

The first step in simulating wood-drying distortions is to simulate the wood-drying 
process. The output of this moisture transport simulation is the moisture content of the 
wood piece as a function of time. This output is then used as input to a second step in 
which the shrinkage and deformation of the wood piece is simulated. A diffusion model 
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was used here to simulate moisture transport, and this simulation requires diffusion and 
mass transfer coefficients. Such values from drying Norway spruce (Picea abies)
sapwood were measured and reported in paper 3. Measurements of the moisture content 
during drying of a sample were made with CT, and the diffusion coefficient was 
evaluated with two methods. The first method used a one-dimensional and the second a 
two-dimensional diffusion model. No assumptions of the dependence of the diffusion 
coefficient on any functions or variables were made beforehand. Both methods showed 
about the same result and dependence on moisture content, but also on depth (distance 
from surface) of the diffusion coefficient. The depth dependence was only apparent near 
the surface. Comparisons of the evaluated values of the diffusion coefficient in general 
terms with other results were made and showed agreement. 

Industrial process changes aimed at reducing twist distortions are interesting to study. In 
paper 4, simulations of drying distortions were conducted, and pretwist during drying as a 
remedy to overcome twist of boards was tried.  Paper 4 also contained results from 
laboratory experiments on the influence of the spiral grain angle and the degree of 
restraint and pretwist during drying on twist of boards. Results from an industrial test of 
the influence of the spiral grain angle and the degree of restraint on twist of boards were 
also described. The laboratory experiments and the industrial test were simulated with an 
FEM simulation model in two stages. First, the FEM model was calibrated by adjusting 
the yield stresses of the wood material in order for the results from the laboratory 
experiments to agree with the simulation model results. Then in a second stage, the 
simulation model was used to simulate the industrial test. The results showed that the 
FEM simulation model was capable of producing realistic results, but that there were 
some discrepancies between the industrial test results and the simulation results. The 
discrepancies were assumed to be due to biased measurements, insufficient knowledge of 
the distribution of the spiral grain angle or other causes. 

Keywords: Computed Tomography, CT, Diffusion coefficient, Distortions, Drying, FEM, 
Finite element method, Timber, Norway spruce, Picea abies, Pretwist, Simulation, Spiral 
grain, Straight, Timber, Twist, Warp, Wood. 
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Sammanfattning
Denna avhandling handlar främst om datorsimuleringar av torkdeformationer hos sågat 
virke, och då speciellt om skevhet. Skälet för att intressera sig för torkdeformationer är att 
dessa innebär problem och ger kvalitetsnedsättningar och värdeförluster i trävärdekedjan. 
Datorsimuleringar är ett teoretiskt sätt att simulera vad som händer i verkligheten när 
virke torkas. Med en bra datormodell som är kapabel till realistiska simuleringar av 
torkprocessen är det möjligt att studera vad som händer med torkdeformationerna när 
parametrar i torkprocessen ändras. På så sätt är en bra datormodell ett bra verktyg för att 
förbättra och optimera torkprocessen för sågat virke. Datorsimuleringar har den fördelen 
jämfört med verkliga experiment att de är billiga och snabba att utföra, medan de har den 
nackdelen att resultaten kan vara tveksamma om datormodellen inte är bra. 

Trä är ett anisotropt material som ofta modelleras som ortotropt. Detta innebär att det har 
tre ortogonala riktningar i varje punkt och olika egenskaper i varje sådan riktning. I 
artikel 1 beskrevs en icke-förstörande metod att bestämma de ortotropa riktningarna i trä 
ur en serie tvådimensionella bilder tagna med datortomografi (CT). Denna metod 
använder sig av fiktiva, små sfärer i trämaterialet där sfärens huvudtröghetsriktningar 
beräknas utifrån densitetsinformationen i CT-bilderna. Huvudtröghetsriktningarna antas 
vara den radiella, den tangentiella och fiberriktningen i punkten ifråga. Tester av metoden 
på tre provbitar visade att metoden fungerar, men att resultat från enskilda sfärer 
uppvisade stor spridning. 

Skevhet hos sågat virke beror på ett antal faktorer (variabler). Traditionellt så har ofta en 
formel från sent 50-tal av Stevens och Johnston för enskilda årsringscylindrar använts för 
att förklara vad skevhet beror av. I denna formel är fibervinkeln en intressant variabel (de 
övriga är fuktkvotsförändringen, fuktexpansionskoefficienten och årsringsradien). Men 
sågat virke är inte enskilda årsringscylindrar, och i artikel 2 behandlades beroendet hos 
skevheten hos sågat virke av diverse variabler genom en teoretisk och analytisk 
härledning. Resultatet blev en formel med två termer där den första termen motsvarar 
Stevens och Johnstons formel. Den andra termen är proportionell mot den radiella 
gradienten hos fibervinkeln och den kan dominera över den första termen för virke som är 
sågat långt från märgen. Giltigheten hos den andra termen visades genom jämförelser 
med finita element- (FEM) resultat och mätresultat. 

Det första steget när man simulerar fuktdeformationer är att simulera torkprocessen. 
Resultatet av denna simulering är fuktkvoten som funktion av tiden i varje punkt i 
träbiten i fråga. Andra steget är sedan att simulera krympningen och deformationerna 
genom att använda fuktkvoten från första steget som indata. I första steget användes en 
diffusionsmodell för fukttransporten, och då krävs att massövergångstal och 
diffusionskoefficient är kända. Sådana värden vid torkning av splintved hos gran 
(Norway spruce, Picea abies) uppmättes och rapporterades i artikel 3. Mätningar av 
fuktkvoten gjordes med hjälp av CT, och diffusionskoefficienten beräknades med två 
metoder. Den första metoden använde en endimensionell och den andra en 
tvådimensionell diffusionsmodell. Inga antaganden om diffusionskoefficientens beroende 
av någon funktion eller några speciella parametrar gjordes på förhand. Båda metoderna 
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gav närapå likadana resultat och visade på ett beroende hos diffusionskoefficienten av 
fuktkvoten och avståndet till ytan. Beroendet på avståndet till ytan gällde bara nära ytan. 
En jämförelse visade på överensstämmelse i generella termer med resultat uppmätta av 
andra.

Industriella processförändringar syftade att minska skevheten hos det producerade virket 
är intressanta att studera.  I artikel 4 behandlades hur skevheten kan styras hos sågat och 
torkat virke som varit fastspänt under torkningen på olika sätt. Genom att hålla virket 
fastspänt i ett rakt läge under torkningen så minskar skevheten jämfört med virke som 
torkats helt fritt. Genom att hålla virket fast inspänt i ett motvridet läge under torkningen 
kan man åstadkomma ett helt rakt virke efter torkningen. Med motvridet menas att man 
vrider virket tvärs emot den förväntade skevheten efter torkning. Den storlek på 
motvridningen som krävs för att få rakt virke efter torkningen är en funktion av 
fibervinkeln hos virket. Resultat från laboratorieexperiment på virke som torkats fritt, fast 
inspänt och motvridet redovisades. Vidare redovisades resultat från industriförsök på 
sågat virke som torkats fritt och fast inspänt. En simuleringsmodell som använder FEM 
prövades, och resultaten jämfördes med mätresultaten i två steg. I ett första steg 
kalibrerades FEM-modellen genom att flytgränser för träet fastställdes för att ge resultat 
som överensstämde med laboratorieexperimenten. I ett andra steg jämfördes FEM-
modellens resultat med resultaten från industriförsöken. Jämförelserna visade att FEM-
modellen gav realistiska resultat, men att vissa skillnader mellan FEM-modellens resultat 
och resultaten från industriförsöken fanns. Skillnaderna antogs bero på oprecisa mätdata 
och andra skillnader mellan FEM-modellen och det verkliga virket. 
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Preface
Although the special focus of this PhD thesis is wood-drying distortions, it also deals 
somewhat with pole-vaulting. Pole-vaulting was the subject of my licentiate thesis from 
1995, On the Mechanics of Pole Vaulting, and it is included here as the last appendix. I 
am aware that some readers may think that drying distortions of wood and pole vaulting 
have little in common. But on the contrary, I think they have much in common, since 
both subjects involve dynamic events that are very suitable for finite element simulations. 
Aside from that, I think it is nice to have my scientific work collected. Also, some readers 
may wonder: “why model pole-vaulting in the licentiate thesis and wood-drying 
distortions in the PhD thesis?” Well, if you care about that, here’s the answer: (if you 
don’t care, stop here, and don’t read the rest of this preface). 

I have never really planned to become a scientist or to become a PhD. In fact, I haven’t 
done much long-term career planning at all, to tell the truth. I believe my career so far has 
been the result of curiosity, interest, determination and a great deal of coincidence. In 
school I quickly discovered that I was good at, and interested in, mathematics, physics 
and those kinds of subjects. One thing led to another, and now, after 25 years of work 
after graduating as a “civilingenjör” (Master of Engineering) and at the age of 50, I am at 
the point of defending my PhD thesis. Here is how my career in engineering and science 
started:

I started working as an engineer back in 1980 for the (on a Swedish scale) relatively large 
turbine manufacturing company Stal-Laval Turbin AB in Finspång. I came there as a 
“civilingenjör” and a freshman and I came there directly from LTU (Luleå University of 
Technology). I didn’t want to stay at LTU as a PhD student, even though I was very 
interested in mathematics, solid mechanics, computer methods and all the other subjects 
we were taught at the university. I was offered to stay and commence PhD studies, but I 
rejected those offers. I was a bit tired of school and instead very eager to see what my 
knowledge could be used for in industry. I was curious to find out what engineers really 
worked with in industry, since I think the teachers at the university never told us that 
(perhaps, I believe, because most of the teachers at universities have little or no industrial 
experience).

However, I soon found out that my knowledge wasn’t that extensive, since I worked with 
colleagues who knew a lot more than me about almost everything. I stayed at Stal-Laval 
for seven years, and I learned a lot, both theoretical and practical stuff, about machine 
design, finite elements, rotor dynamics, fluid dynamics, fatigue, vibrations, computer 
programming and so on. This was mainly because of the stimulating work and 
environment at the research and development department, but also because of my own 
interest. During the years in Finspång I started taking some PhD courses at Linköping 
University together with a group of other engineers at Stal-Laval, since we all discovered 
that our knowledge in mathematics (linear algebra), solid mechanics and dynamics was 
too limited. We were in the happy situation that our employer let us go to the lectures on 
our working time. I think my 7 years in Finspång were my most intense period (hitherto) 
when it comes to learning things, but also when it comes to producing results. Most of the 
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time, I wrote computer programs and developed methods for strength calculations and 
dynamical calculations of turbine parts. I think a lot of my work there (and also my 
colleagues’ work) would easily have qualified for publishing in scientific journals, but it 
was not customary at that time to publish one’s work.  

After my time in Finspång I wanted to try to work for a small company in order to have at 
least some experience of marketing and business work in small companies, i.e., things 
that I knew little about at that time. Thus in 1987 I started working at the Industrial 
Development Centre (IUC) in Skellefteå, a relatively small (about 50 employees) 
consulting company. IUC operated on a partly commercial basis, but with financial 
support from the state and municipality, to do product development for small companies. 
The plan was that IUC was going to do some marketing work for the new IBM 
supercomputer that the municipality of Skellefteå had bought and for which IUC was 
hired. I was employed to show examples of large computer simulations and also to help 
client companies do their own simulations.  

The period in which I was doing these marketing examples of computer simulations (for 
free) was very interesting; e.g., I simulated downhill skiing, crash protection bars in cars, 
poles for pole vaulting and other sorts of unusual things. Sometimes we also helped 
inventors who came to us with their inventions and wanted to simulate something that 
had to do with the invention. In that way I have gotten requests to simulate horse-wagon 
wheels, hospital beds, car-towing mechanisms, poles for lighting up roads, electrical 
contacts, rubber water containers and so on. I also came to meet other interesting people 
during this period, inventors as I mentioned above, politicians, newspaper people, 
bureaucrats, real secret detectives from SÄPO, King Carl-Gustav of Sweden, the 
ambassador of Russia in Sweden, Boris Pankin, who worked for the communist regime in 
Russia but was nominated in 1991 by Mikhail Gorbatjov as the first foreign minister of 
the new Russian federation, the prime minister of Sweden, Ingvar Carlsson, one of the 
famous inventors of the FFT transform back in 1965, Cooley and Tukey (I don’t 
remember which one), the legendary Sergei Bubka and others.  

Our purpose with the simulations at that time was mainly to show how a supercomputer 
could be used in industry for product development. Since we were doing marketing for 
the supercomputer, we often managed to publish the stories of the small but spectacular 
simulations in local newspapers or even in national newspapers. In that way my 
simulation of a pole vault ended up in a large article in Ny Teknik in 1988 that caught the 
eye and interest of Bengt Lundberg, Professor in solid mechanics at LTU, whom I already 
knew from before. He suggested that we do something more with my simulations, which 
would lead to some scientific papers and to a licentiate degree for me. I was very 
interested in that, and after some planning, Bengt and I managed to get some money from 
the pole vault manufacturing company, Styrelsen för Teknisk Utveckling (STU) and also 
IUC, and I started working with these “scientific” pole vault simulations part time (but 
during daily working hours) in the beginning of 1989. It was stimulating work, but the 
money in the project soon ran out and I ended up with a lot of interesting simulation 
results, managed to write a report to the companies that financed the project as I was 
obliged to, but I didn’t have time or money to sum up the work in scientific papers.  
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About that time (1990) I got married, and we bought an old farmhouse outside of 
Skellefteå that we started renovating. I also started working a little in our forest in my 
spare time, so there was little time to do scientific work. We also had a son in September 
1990 who unfortunately stopped breathing and died two months old. Eventually I 
managed to sum up my work with pole-vault simulations and the PhD courses mainly in 
my spare time. Finally, in 1995 I could finish the work with a licentiate thesis consisting 
of two papers published in the Journal of Biomechanics. Among other things that 
complicated life slightly during this period (especially during 1994) was that I had a 
serious accident in April 1994 that nearly killed me. I fell off a rocky precipice near home 
when my neighbour and I were setting up a nesting box for a kestrel (tornfalk in Swedish) 
and I cracked my upper vertebra, broke my jaw into four pieces and lost most of my 
upper teeth. Luckily enough, I received no permanent injuries—I only got an involuntary 
diet treatment for 7 weeks. Also, we had a second son in November 1994. To sum it up, it 
was a great relief to be finished with and put aside the scientific career in 1995, being a 
Licentiate of Technology. Now I could devote my daily time to consultant work and my 
free time to my leisure work and family and not to writing scientific papers. To work with 
a licentiate thesis that sometimes interferes with your gainful employment, and not to feel 
that your employer fully encourages it, that is not a fruitful situation. My advice is that 
such work should be avoided. By the way, the kestrel hasn’t used our nesting box (yet). 

Anyway, in about 1991 the marketing work for the supercomputer had successively come 
to an end, since interest in using the supercomputer in the way that was expected was 
limited (to say the least). Instead, I came to do regular consulting commissions for 
companies due to the interest that came out of our marketing efforts. One of the 
customers of my consulting services was my former employer Stal-Laval. The consulting 
work was exciting and challenging, and things went on pretty well. By 1995 the 
consulting business had become very successful both financially (for my employer) and 
technically.  

At that point I felt it was time to change employers, and I went on to another consulting 
company in Skellefteå, this time on a strictly commercial basis. I worked with this 
consulting company until 2002 and did various consulting tasks leading a group of 
engineers mainly doing FEM calculations for Swedish companies. We had great success 
during the good years 1995–2001 but during 2001–2002 we (and I think also the rest of 
Sweden) got caught in a stock market recession, and my work for this company came to 
an end.

Living and working in Skellefteå of course led to connections to wood and wood research 
via LTU and the Division of Wood Science and Technology in Skellefteå and via Trätek 
(the Swedish Research Institute for Wood) in Skellefteå. From about 1995 I was teaching 
solid mechanics in the autumns at LTU, and I also did consultant work on the strength of 
wood bridges and other wood components for Trätek. The commissions were challenging 
and interesting, and these contacts eventually led to my employment at LTU in Skellefteå 
from 2002.  
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When my consulting employment came to an end in 2002 I had to search for another job. 
I didn’t want to go into consulting again, and I would have preferred to work again for a 
large industrial company, but did not want to move from Skellefteå. Such jobs did not 
exist here at that time. However, I was also interested in an academic job, and I managed 
to get a job at LTU in Skellefteå, since they needed me mainly for teaching solid 
mechanics to engineering students. At first, I worked mainly with teaching, but soon I 
started to do FEM simulations on compression-wood boards together with Jan Nyström 
and Michael Öhman. It felt then and still feels very nice to be “back in serious business” 
doing some real scientific work and being able to dig deep into something. Compared to 
my scientific research work, mainly in my spare time, during the years 1990–1995, it felt 
like heaven or paradise doing research work on paid work time and with colleagues that 
are doing the same thing and with encouraging advisors. From the simulations came first 
a paper on a method to compute fibre directions from CT images (paper 1 in this thesis). 
It ended up with me being a PhD student, and eventually the rest of the papers in this 
thesis were developed. 

Well, that’s it, and now finally I must thank my supervisor Professor Anders Grönlund, 
who let me do this work and managed all the financing, mainly from Formas (the 
Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning), 
and of course all of my colleagues for the pleasant, friendly and stimulating environment 
at LTU Skellefteå. Also thanks to my family Berith, Samuel and Sandra who in their own 
ways have contributed to this thesis. 

Skellefteå in August 2006 

Mats Ekevad

“Philosophy is written in this grand book—I mean the 
universe—which stands continually open to our gaze, 
but it cannot be understood unless one first learns to 
comprehend the language in which it is written. It is 
written in the language of mathematics, and its 
characters are triangles, circles, and other geometric 
figures, without which it is humanly impossible to 
understand a single word of it; without these, one is 
wandering about in a dark labyrinth “ 

Galileo Galilei (1623) 
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1 Notations 

1.1 Abbreviations 
CT  computed tomography 
EMC equilibrium moisture content 
Eq. equation 
FEM finite element method 
Fig. figure 
FSP fibre saturation point 
MC moisture content 
1-D one-dimensional 
2-D two-dimensional 
3-D three-dimensional 

1.2 General notations 
A symbol without overbar is a scalar value; a symbol with one overbar (or denoted by a 
bold lowercase symbol) is a vector; and a symbol with double overbars (or a bold 
uppercase symbol) is a matrix. Superindex T on a vector or matrix means that the vector 
or matrix is transposed. Symbols separated by commas inside parentheses mean “function 
of”; e.g., E = E(T, u) means that E is a function of T and u. Differentials of a function are 
denoted by a d before the function; e.g., dE. Partial derivatives are denoted by parentheses 

with the fixed variables as subindices; e.g., 
uT ,

means the partial derivative of strain 

 with respect to stress  when temperature T and moisture content u are kept constant 
(but sometimes the subindices are omitted in order to increase readability). Subindices 1, 
2, 3, 4, 5, 6 in stress or strain vectors are equal to subindices 1, 2, 3, 12, 13, 23, 
respectively, and denote the same components (3 normal and 3 shear components). 
diag(x, y, z) means a 3 by 3 diagonal matrix with x, y and z on the diagonal.  

The deplorable use of the same symbol for different quantities or of different symbols for 
the same quantity is unfortunately not completely avoided in this thesis. This is due to the 
fact that the papers in the appendices and also cited papers are not completely consistent 
when it comes to the use of symbols. However, symbols that can be misunderstood are 
always explained in the text close to the symbol and the risk for misunderstanding is thus 
minimal. Below is a list of symbols and explanations taken from papers 1 to 4.  

g : mass flux 
C : a constant  
D : diffusion coefficient (paper 3), a constant (paper 2) 
l : length 
r : radius 
rm : mean radius for the section 
s : relative shrinkage 
x, y, z : coordinates 
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w : ratio of change of mass of moisture to the mass of dry wood 
t, l : moisture expansion coefficients in tangential and fiber direction (paper 2) 

  but  is also used as the thermal expansion coefficient, see section 1.7   
  below  
 : moisture expansion coefficient (see section 1.8 below), mass transfer   

  coefficient (paper 3) 
,   : twist angle in paper 2 and 4, respectively 
p  : pretwist angle 
0 : dry density 
,   : spiral grain angle in paper 2 and 4, respectively 
m  : spiral grain angle, mean value for the section 

1.3 Units 
SI units are used unless otherwise stated. 

1.4 Stress notations 
Stress, stress vector: 

TT )()(, 654321231312321

Normal stress: 321 ,,,
Shear stress: 654231312 ,,,,,,,
Yield stress: ssssssssss 231312654321 ,,,,,,,,,
Yield stress in tension: ..................,.........,, 21 sdsdsd

Absolute value of yield stress in compression: .......................,.........,, 21 scscsc

Virgin yield stress in tension: 0
sd

Virgin yield stress vector in tension (for a material with equal yield stresses in 1-D 
compression and tension tests): 

T
sdsdsdsdsdsdsd

0
6

0
5

0
4

0
3

0
2

0
1

0

Virgin yield stress vector (if the yield stresses in 1-D compression and tension tests differ 
for normal stress components): 

T
sssscsdscsdscsdsdc

0
23

0
13

0
12

0
3

0
3

0
2

0
2

0
1

0
1

0

Yield stress vector (for a material with equal yield stresses in 1-D compression and 
tension tests): T

sssssss )( 231312321

Yield stress vector if the yield stresses differ (for normal stress components) in tension 
and compression: T

sssscsdscsdscsds )( 231312332211

Effective stress: e

Effective stress (for 3-D orthotropic materials): a
es

1.5 Strain notations 

Strain, strain vector: TT )()(, 654321231312321
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Normal strain: 321 ,,,
Shear strain: 654 ,,
Plastic strain: p

Effective plastic strain: p
e

Plastic work: pW

1.6 Temperature and MC notations 
Temperature: T
Initial (= start) temperature: T0
Reference temperature: Tref
Moisture content as water mass/dry wood mass: u
EMC for the surrounding air: u

1.7 Thermal expansion notations 
Thermal expansion coefficient: 
(True) thermal expansion coefficient at zero stress: 0
Mean thermal expansion coefficient at zero stress between T0 and T: 0m(T, T0, u) 
Mean thermal expansion coefficient at zero stress between Tref and T: ),,(0 uTT ref

ref
m

Thermal expansion coefficient vector: 1 2 3 4 5 6
T  where the 

subindices reefers to the three normal and three shear directions. 
(True) thermal expansion coefficient vector at zero stress: 

T
0000

3
0
2

0
10

Mean thermal expansion coefficient vector at zero stress between T0 and T:
Tmmm

m 0000
3

0
2

0
10

1.8 Moisture expansion notations 
Moisture expansion coefficient: 
(True) moisture expansion coefficient at zero stress: 0
Mean moisture expansion coefficient at zero stress between u0 and u: 0m(T, u, u0)
Mean moisture expansion coefficient at zero stress between uref and u: ),,(0 ref

ref
m uuT

Moisture expansion coefficient vector: T
654321  where the 

subindices refer to the three normal and three shear directions. 
(True) moisture expansion coefficient vector at zero stress: 

T
0000

3
0
2

0
10

Mean moisture expansion coefficient vector at zero stress: 
Tmmm

m 0000
3

0
2

0
10
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1.9 Elasticity notations 
Diagonal matrices expressing the relative rate of change of the elastic modulus with 
respect to temperature or MC, respectively: uT MM ,
Elastic modulus: E, E1, E2, E3
Shear modulus: G, G12, G13, G23
Poisson’s ratios: 12, 21, 13, 31, 23, 32 where ij/Ei = ji/Ej for i, j = 1, 2, 3. 

The flexibility matrix: 
uT

CF
,

1

The stiffness matrix: 
uT

FC
,

1

Elastic modulus vector: TGGGEEEE 231312321

Elastic modulus vector (if the yield stresses for normal components differ in compression 
and tension): T

dc GGGEEEEEEE 231312332211

1.10 Plasticity notations 
Yield function: f = 1 when yielding occurs, = 0 unloaded.
Coefficients in Tsai-Wu yield function: fi and fij for i, j = 1, 2, 3, …, 6 and fij = fji.
Coefficients in Hill’s yield function: F, G, H, L, M, N 
Plastic, or hardening modulus: H
Ratio between plastic and elastic modulus: h
Positive constant: 
Ratio between yield stress in compression (absolute value) and in tension: 

1.11 FEM notations 
Node displacement vector: 
Outer or applied load vector: p
Inner nodal force vector: q
Correction (to displacement) vector: c
Superindex, but no subindex, e.g., 

jj
q , , means exact variable or vector value at load 

increment j. Subindex and superindex, e.g., 
j
i , means approximate variable or vector 

value at iteration i and at load increment j. No index at all on a variable or vector means 
exact value at total, full load.  
Force vector function: F
Unbalance load vector: F

Jacobian matrix or tangent stiffness matrix at load increment j and iteration i:
j
iF



Mats Ekevad Modelling of dynamic and quasistatic events with special focus on wood-drying distortions 

 5 

Elastoplastic stiffness matrix at load increment j and iteration i:
j

i

EP
C

Positive constant at iteration i: i
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2 Introduction 
This thesis contains a main text part followed by five appendices. The appendices are four 
papers in chronological order and a licentiate thesis (which itself contains two papers: 
Ekevad & Lundberg 1995; Ekevad & Lundberg 1997). The function of the main text is to 
describe the background and comprehensive objective that was the guideline for the 
research work that resulted in the papers. A further purpose is to link together, summarize 
and draw conclusions in the best possible way based on what is described in the papers. 
Finally, the main text shows deductions and explains things about wood and simulations 
that are not presented in detail in the papers.  

2.1 Computer modelling 
Computer modelling of events or processes is often done with commercial computer 
programs as a basis, but with the addition of specially written subroutines for the process 
in question. Commercial computer programs suitable for simulation of dynamic and 
quasistatic events in that way are, for example, Matlab (Anon. 2001) and ABAQUS 
(Anon. 2003). The general principle in performing computer simulations with the purpose 
of optimizing a process that is being simulated is to first do a calibration in which the 
results from the computer model are tuned to agree with the experimental results for the 
same ordinary load case by adjusting one or several coefficients in the model. This 
calibration procedure may be done for several load cases and with several adjustable 
coefficients in the model. If after this calibration the model produces results that agree, 
within the desired range of accuracy, with the corresponding experimental results for one 
or several load cases, then the model may be accepted. Then, as a second step, the 
simulation model is used to perform simulations in which the results of process changes 
are tried out with the purpose of finding the process changes that optimize the total output 
in the desired way. Often, considerable effort must be put into the first calibration part, 
since it is possible that the simulation model must be changed or refined several times in 
order to obtain the desired accuracy. The advantage of using computer models is that the 
effort to perform lots of simulations in the second, optimizing part is fast and cheap 
compared to trying out the effects of process changes in reality. If the final, optimized 
process is very different from the calibrated test cases, then there may be a concern that 
the results of the simulations may be inaccurate. If such a concern exists, then 
experiments must be performed in order to check the accuracy of the results. 

The finite element method (FEM) is a general mathematical method for solving partial 
differential equations, and it is frequently used in performing computer simulations. 
Descriptions of FEM are given by, for example, ABAQUS Theory Manual (Anon 1998), 
Bathe (1982), Cook (2001) and Zienkiewicz & Taylor (2000). FEM is used in mechanical 
engineering as a numerical method for computer simulation of the deformation of 
deformable bodies by loading. FEM has been used commercially since the 1970s in the 
manufacturing industry, mainly for strength and deformation analyses of parts or 
structures. FEM in general is a method whereby the structure in question is divided into 
many small elements of elementary shape, e.g., tetrahedral or hexagonal elements. An 
elementary function (e.g., a linear or a quadratic function) with unknown coefficients is 
assumed to describe the sought variable (e.g., the displacements) within each element. By 
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minimizing a suitable functional (e.g., the potential energy of the structure) with respect 
to the unknown coefficients in the sought variable functions, a solution can be found. It 
can be shown that this solution approaches the exact solution when the number of 
elements goes to infinity.  

FEM can be used both for modelling the MC in wood material during the drying process 
(Fig. 1) and the following deformations resulting from shrinkage due to a decrease of MC. 
Normally, these two processes are simulated in separate simulations with the MC output 
of the first simulation going into the second simulation. The drying and deformation 
simulations are dynamic; i.e., they are simulations in time. However, the deformation 
simulation is only quasistatic, since it is so slow that it has negligible inertia effects. FEM 
may also be used for simulation of the pole-vaulting process. Simulations of pole-vaulting 
are dynamic simulations in which inertia has a large effect. 

Fig. 1. Example of output from an FEM simulation of the drying process. Drying of a 
rectangular, solid wood piece, shown here as cut up in slices in order to show the results 
inside the solid volume. Results shown are MC expressed as mass of water per volume 
(kg/m3).

2.2 Wood distortions 
An important disadvantage with wood is that wood deforms during drying. Warp of dried 
wood boards is a reason for quality degrade, and thus income loss, in the production of 
boards. Due to this negative property, wood products have lost market share in 
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applications where wood traditionally has been the natural choice of material (Johansson 
et al. 1994; Eastin et al. 2001). Deformation of wood due to variations in air humidity 
may also be a problem for wood products during their life cycle. The deformations may 
cause cracks, malfunctions or other types of problems.  

“The six major types of warp are bow, crook, twist, oval, diamond and cup,” (Wood 
Handbook 1999) and many scientists have studied warp and investigated which 
parameters have influenced the magnitude of warp when MC changes (Danborg 1994; 
Woxblom 1999; Forsberg 1999). In this thesis, only twist is studied, because it is believed 
to be one of the worst kinds of defects. Twist is mainly influenced by the magnitude of 
spiral grain and the distance from the pith (Booker 2005; Forsberg 1999; Forsberg & 
Warensjö 2001; Gjerdrum, Säll & Storö 2002; Harris 1989; Johansson, Perstorper, Kliger 
& Johansson 2001; Johansson & Kliger 2002; Nyström 2000; Nyström & Grundberg 
2002; Nyström 2002; Nyström 2003; Sepulveda 2003; Skatter & Kucera 1998; Stevens & 
Johnston 1960; Säll 2002; Woxblom 1999), but also by the gradient of the spiral grain 
angle (paper 2; Forsberg 1999). Spiral grain occurs naturally in trees (Säll 2002), and the 
normal pattern in the northern hemisphere is that the spiral is left-handed in young wood, 
with a change to right handed in mature wood (Skatter & Kucera 1998). Some trees, 
however, seem to stay left-handed and just increase the left-handed spiral with age. 
Boards sawn from these trees have a very great tendency to twist (Nyström 2002).  

Spiral grain on logs and boards can be measured with the aid of the tracheid effect. The 
tracheid effect utilizes the light-conducting properties of the softwood tracheids to 
measure the direction of spiral grain. A small laser point is projected onto the wood 
surface. The light transmitted in the wood and scattered back forms an elliptic shape 
extended in the direction of the fibres. The ellipse of light is registered with a camera, and 
the orientation of the ellipse’s major axis corresponds to the fibre direction (Nyström 
2003).  

Bow and crook are influenced by differences in the longitudinal shrinkage in different 
parts of a piece of wood. The differences in longitudinal shrinkage depend mainly on the 
distribution and magnitude of compression wood and juvenile wood (Johansson & Kliger 
2002).

Control and understanding of how drying distortions evolve are essential in order to 
reduce distortions and thus increase the quality of sawn timber. Changes in the 
manufacturing process for wood products may overcome or reduce some of the problems 
with twist. Simulation techniques are tools that help to understand and control the factors 
that affect drying distortions. Computer simulations of twist can be used to study the 
influence of changes in the manufacturing process and thus lead to knowledge that is hard 
to obtain in any other way. As a byproduct, knowledge of how to model wood behaviour 
is not only valuable when it comes to modelling wood-drying distortions; it is also 
valuable when it comes to modelling wood products exposed to all other sorts of loads.  
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2.3 Objective and limitations 
The objective of this work, with focus on wood-drying distortions, was to develop 
methods and simulation models for wood-drying deformations (mainly twist). A part of 
this objective was also to present results that showed the validity of the simulation 
models, to increase understanding of the causes of twist and to present results from 
simulations that point out manufacturing process changes that would reduce twist 
distortions. Local variations of material characteristics were to be included as much as 
possible, and methods to measure these local variations were to be used or developed. 

The main limitations of this work were believed to be that only twist was considered, that 
the log model had no knots and that the only wood species that was considered was 
Norway spruce (Picea abies). Also, the material model for wood was limited to an elastic-
plastic model. The material coefficients that were used in this model were taken or 
estimated from several different literature sources, and the level of accuracy may be low 
for some coefficients. 

2.4 Outline of the thesis 
The unique ingredients of this doctoral thesis are the results of the efforts to model local 
material variations in wood by using CT techniques (paper 1, paper 3), the derivation of 
the influence on twist of the spiral grain gradient on the twist of wood studs (paper 2) and 
the derivation of an elastic-ideally plastic material model for wood and the results that this 
model gives (paper 4). The simulations of the drying deformations are done in two steps 
by first using a drying-simulation model and then secondly a deformation-simulation 
model. The connection between these two steps and the papers in this thesis is shown in 
Fig. 2.

The licentiate thesis in Appendix 5 describes the simulation models that were developed 
to simulate pole-vaulting. The objective of this work was to develop methods and 
simulation models for pole-vaulting, to present results that showed the validity of the 
simulation models, to present results of vaulting heights that were possible to reach and to 
optimize the pole with respect to vaulting height. All of this was mainly done in order to 
develop a pole-design method and pole-design tool so that the pole designer could design 
better poles. Two models were developed. The first was a model with a passive, point-
mass vaulter. This model was used to calculate the influence of pole length and stiffness 
on the vault height for a given vaulter. The second model had an active and “smart” 
vaulter in the sense that he tried to control his muscle torques in order to achieve the 
highest possible vault. In modelling pole-vaulting there was a need to model the material 
behaviour of the pole, but also for the second model to model how the human muscle 
torques acted on the pole and vaulter. The unique ingredients in the licentiate thesis 
(Appendix 5) were the optimization of the pole length and stiffness for a given vaulter 
(Ekevad & Lundberg 1997) and the simulation model and the results for a model of a pole 
and a “smart” vaulter (Ekevad & Lundberg 1995) (see Fig. 2).  
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Fig. 2. Outline of the relationship between the papers and the simulation models. 

What links together the wood-drying simulations and the pole vault simulations are that 
they are both simulations of dynamic or quasistatic events and that they are done using 
FEM, ABAQUS and user-written subroutines. However, there are both similarities and 
differences between the two kinds of simulations. The materials used in the dynamic and 
quasistatic events, glass-fibre for pole-vaulting and wood for wood-drying simulations, 
are both orthotropic fibre materials, but they are described with different material models 
in the simulations. The material description is purely elastic in the pole-vault simulations, 
but is elastic-plastic in the wood-drying simulations. Most of the user subroutines were 
written for the material description in the case of the wood-drying simulations, but mainly 
written for the description of the control of muscle torque of the vaulter in the pole-vault 
simulations. Inertia effects are important, and the deformations of the pole and vaulter are 
large, in the relatively fast event of pole-vaulting. But inertia is not very important, and 
the deformations are small, in the relatively slow process of wood drying. However, 
perhaps the most important difference between the two types of simulations is that glass-
fibre material is manufactured, and variations in material properties achieved during 
manufacturing are controlled and limited. In contrast to this, wood is a biological 
material, and every tree and every board is different. Sorting logs or boards in groups with 
similar characteristics may limit variations within groups to some extent, but still the 
material properties vary considerably between individual boards. Thus material properties 
of wood found in handbooks are always mean values, and one must bear in mind that an 
individual piece of wood may have deviant properties. 

paper 1 paper 2 

Drying model Deformation 
model 

paper 3 paper 4 

MC results 

Simulation model of a 
passive vaulter 

Simulation model of 
a ”smart” vaulter 

Licentiate thesis 

App. 5 
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3 Theory 
This theory section contains basic explanations and definitions of wood mechanics, wood 
drying, computer FEM simulations, material modelling and the linear elastic-plastic 
orthotropic material theory that was used in paper 4. The description of wood is made 
with special reference to softwoods and especially Norway spruce (Picea abies), because 
it is the material that is treated in this thesis. This means that the description is not valid in 
all respects for other species, especially hardwoods. 

3.1 The inner structure of wood 
Information about this subject may be found in Wood Handbook (Anon. 1999), 
Dinwoodie (2000), Gibson & Ashby (1988) and Johansson (2002). The description here is 
simplified and is focused on wood behaviour from a mechanical point of view and for use 
in the simulation models of wood-drying deformations. 

A tree grows in diameter and height periodically in annual cycles, and the wood material 
in a tree is thus characterized by a cylindrical geometry with growth rings. The stem has a 
small taper, since the tree is thinner (and thus younger) at the top than at the root. A tree 
grows horizontally (i.e., in diameter) because a new growth ring is added to the old ones 
every growth season. The only exception to this is the leading shoot, which grows both in 
diameter and vertically upwards to enable the tree to grow in height.

Within a single growth ring there is a first, less dense part called earlywood that grows in 
springtime and early summer. Then there is a second, denser part called latewood that 
grows during the late summer. There is no growth during the autumn and winter. The first 
20 to 30 growth rings close to the pith are called juvenile wood (Thörnqvist 1990) and 
have lower strength and higher shrinkage in the fibre direction than the rest of the growth 
rings. The outer and younger part of the stem fulfils the function of storage and 
conduction of water and nutrients and is called sapwood. The inner and older part (closer 
to the pith) of a mature tree stem no longer fulfils these tasks and is called heartwood. The 
growth of a tree only takes place outside of the outermost growth ring, through cell 
division in the cambium, just beneath the inner bark.  

The flow of water upwards in the tree takes place in the sapwood, and a downward flow 
of nutrients takes place in the inner bark. In microscopic detail, the main part of the wood 
material consists of slender, approximately vertically aligned fibres (or cells or tracheids) 
that are a kind of hollow “pipes” about 1.7–3.7 mm long and 0.02–0.04 mm thick (Fengel 
& Wegener 1984) (see Fig. 3). The hollow spaces in the fibres are called lumen and in 
sapwood are normally filled with water to be transported upwards from the root to the top 
of the tree. The fibres have pit openings at the ends, but also in the walls that make a flow 
between fibres possible. The solid material in the cell walls has a density of about 1500 
kg/m3, and since dry wood has a density of about 400 kg/m3 we conclude that about 70% 
of the volume of a piece of dry wood is hollow space and about 30% is solid cell walls. 
There are also other kinds of cells, such as ray tracheids, ray parenchyma and epithelial 
cells, oriented in the radial direction in the wood material, but they are not nearly as 
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numerous as the vertical fibres in softwoods. Wood material without knots or defects of 
any kind is called clearwood.  

Fig. 3. To the left a cross-section of a tree stem. To the right an enlargement showing a 
crosscut through the fibres (cells) with the hollow space (lumen) and the cell walls. 

3.2 Qualities and defects of wood 
The properties of a wood sample are determined by the qualities and defects of the tree 
from which the sample is taken. A quality characteristic for a tree may be a defect for a 
wood sample. Knots and branches are essential for a living tree and are thus positive 
qualities, but they may be defects in sawn timber because strength and deformation 
properties deteriorate (Foley 2001, 2003; Saarman 1986; Shigo 1988; Xu 2002). 
However, from a visual point of view, knots may increase the beauty and thus the quality 
of wood (Buchanan 1998). Knots affect the properties of the wood material in the vicinity 
of the knots because the fibres close to the knot are directed either into the knot (going out 
into the tree branch) or are directed around the knot and further upwards in the tree 
(Kramer 2002; Kramer & Borkowski 2004). The density of the wood and growth ring 
distance in the vicinity of knots are affected by knots. There is often compression wood 
on the lower side of a knot, since there are compressive stresses there due to the weight of 
the branch. Knots may be completely or partially live or dead and firmly or loosely 
connected to the surrounding wood material. Knots may contain cracks (especially after 
drying), and they affect the visual impression and the deformation and strength properties 
of the wood. 

Compression wood may be formed in certain volumes of a living tree due to compressive 
stresses during growth (Nyström & Hagman 1999; Öhman 2001; Öhman & Nyström 
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sapwood

cambium 
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2002). Compression wood adds compressive stresses that make the fibres expand in the 
fibre direction. The quality of compression wood for a living tree is that it makes the tree 
return to a vertical height increase even if the wind or the ground has caused the to tree 
lean. Compression wood also helps the branches stay horizontal and not deform too much 
under load. However, for sawn timber, compression wood is a defect since it is hard, 
brittle and harder to saw, shrinks more in the fibre direction and is harder to put a nail 
through, than ordinary wood. There is a tall story that says that in the old days skis were 
best made out of compression wood, but the truth of that is unknown.  

Top breakages of the leading shoot because of frost, snow load or moose eating is quite 
common in Sweden. The tree repairs the damage by using a nearby branch as the next 
leading shoot, and the result is eventually crooked pith, which affects the fibre direction 
near the damage and thus the strength of the wood material. 

3.3 Wood as an orthotropic material 
Definitions of orthotropic materials are given by Lai, Rubin & Krempl (1996) and 
Malvern (1969).  

For each point in an orthotropic material there are three orthogonal normal directions that 
define symmetry planes in the material, and there are different properties in each 
orthotropic direction. Wood may be treated as an orthotropic material, with the three 
orthogonal directions being the radial r, the tangential  and the fibre direction z (bold 
symbols denote vectors). The orthogonal directions vary locally from point to point, since 
the fibre direction varies due to knots and other fibre disturbances.  

One possibility to measure these directions is to use computed tomography (CT) images 
(see Lindgren 1992) and to measure the orthogonal directions directly (and nondestruc-
tively) as discussed in paper 1 or by the method presented by Sepulveda, Oja & Grönlund 
(2002). The CT-direction method presented in paper 1 measures locally varying directions 
throughout the volume of the wood piece based on density variations. However, local 
variations of fibre directions around knots cannot be detected with the available 
resolution. Another more approximate and simpler approach is to use a combination of 
theory and measurements. First we measure or calculate the pith line position (as a curve 
or a straight line), the taper angle c (as a constant or a function of axial position) and the 
spiral grain angle  (as a function of radius). Then the local coordinate system r- -z is 
defined according to Fig. 4 by at first drawing a line AB from, and perpendicular to, the 
pith line, to the point in question. Then the coordinate system is placed with its origin in 
the point in question, the radial direction in the direction of AB, the fibre direction parallel 
to the pith line and the tangential direction so that r- -z forms a right-handed coordinate 
system. Finally, the coordinate system r- -z is rotated first at the angle c around  in 
order to allow for a taper and then followed by a rotation  around r in order to allow a 
spiral grain angle (positive if right-handed). This method gives the mean or general fibre 
directions in a tree or log, but does not take knots and other fibre disturbances into 
account.
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Fig. 4. Model for local orthotropic directions r- -z in wood. Taper angle c and spiral 
grain angle . Line AB from pith, and perpendicular to pith, to point in question.

3.4 Moisture content, temperature, shrinkage and fibre saturation 
point

Wood is a hygroscopic material that normally contains water. The cell walls are hygro-
scopic and may bind water, and the hollow spaces in the cells (lumina) may be filled with 
water. The moisture content (MC) u = mw/m0, where mw is the mass of water and m0 is the 
mass of dry wood, describes the amount of water that the wood contains. In the green, 
living condition, the cell walls are saturated with water, and the cavities (lumina) are 
partially or totally filled with free water. Green heartwood holds less water than green 
sapwood, but u in green condition varies considerably depending on species, on type of 
wood (heartwood or sapwood) and on season of the year. Usually for Norway spruce 
(Picea abies), u in green condition is about 40% for heartwood and about 150% for 
sapwood (Sehlstedt-Persson 2005). If green wood material is exposed to surrounding air, 
the surface, and eventually also the inside of the wood piece, dries. Wood in contact with 
air strives to achieve equilibrium with the surrounding air, and this is expressed by the 
sorption isotherm curve that shows (for a given temperature) the equilibrium (i.e., long-
term) MC (EMC) in wood as a function of the relative humidity in the surrounding air. 

All mechanical material properties of wood are more or less dependent on MC (below 
FSP) and temperature (Green, Evans, Logan & Nelson 1999; Kretschmann 1996; Siimes 
1967). The stiffness and strength of wood increase with decreasing MC and decrease with 
increasing temperature.  

r

z

AB

c
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Wood shrinks when MC falls below FSP, and shrinkage is often assumed to be 
proportional to the fall of MC below FSP (Wood Handbook 1999). The proportionality 
coefficient is the moisture expansion coefficient. Shrinkage is highest in the tangential 
direction, about half this value in the radial r direction and very small (practically zero) in 
the fibre direction z (except for compression and juvenile wood).

3.5 The drying process 
When exposed to air, the surface dries first, and free water from the inside of the wood 
piece is rapidly transported to the surface by capillary forces. When the MC eventually 
has reached the fibre saturation point (FSP), all or most of the free water has evaporated, 
and water transport from the inside towards the surface now changes to a slower 
mechanism. Transport of water now takes place as bound water diffusion in the cell walls 
and as moisture diffusion via humid air in the lumina. FSP is about 25%–30% at room 
temperature and is the point where the cells walls are saturated with water, but the hollow 
space (lumen) is empty of free water. Sawmills dry the wood according to the customers’ 
wishes, normally to an MC of 8%–18%. 

The goal of sawmills is to produce sufficiently dry, stress-free, crack-free and straight 
boards in the shortest possible time. During drying, shrinkage in combination with spiral 
grain, knots, compression wood and other defects will lead to distortions such as twist, 
crook and bow. Convective air-drying of wood is often done in kilns at elevated 
temperatures in order to shorten the drying time, but the wood material also becomes 
more flexible and less brittle at higher temperatures. Raising the temperature means we 
get more plastic deformations, which reduces distortions, compared to drying at room 
temperature. However, shorter drying times will also mean larger MC gradients and thus 
higher stresses during drying. This increases the risk of getting more cracks. The restraints 
on deformation during drying are an important parameter of the drying process.  
Measurement and modelling of the drying process have been done by Awadalla, El-Dib, 
Mohamad, Reuss & Hussein (2004); Danvind (2002); Danvind & Morén (2004); Hunter 
(2001); Kontenta (2003); Morén (1993); Ormarsson (1999); Salin (2002); Wiberg (2001) 
and Wiberg & Morén (1999), among others. Studies of the diffusion and mass-transfer 
processes and evaluation techniques for them have been reported by Cai & Avramidis 
(1997); Fatullayev (2001); Hukka (1999); Hukka & Oksanen (1999); Koc, Houska & Stok 
(2003); Liu, Simpson & Verrill (2001); Liu & Simpson (1999); Pang (1996); Peralta & 
Bangi (2003); Plumb, Spolek & Olmstead (1985); Rosenkilde & Arfvidsson (1997); Salin 
(1996, 1997, 2002); Simpson & Liu (1997); Söderström & Salin (1993); Time (2002); 
Wadsö (1993) and others. 

The uneven shrinkage in the r- -z directions of the wood material during drying results in 
stresses that can be great enough to produce permanent, plastic deformations, even cracks. 
MC gradients in the boards and restraints on deformation during drying also contribute to 
the stress field. After drying, internal, self-equilibrating stresses may remain in the boards. 
They may be the result of growth stresses during the tree’s life that already existed before 
and after sawing, or they may be the result of remaining MC gradients in the boards after 
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drying. They may also appear as a result of uneven shrinkage during drying or be the 
result of a combination of all these causes (Tronstad 2005; Mackay & Rumball 1971; 
Mackay 1973; Northway 1981; Salin, Esping & Hajek 2005; Salin 2005; Visser & 
Vermaas 1988). 

3.6 FEM for wooden components 
Examples of the use of FEM for wooden components are given by Holmberg (1998); 
Ormarsson (1999); Ormarsson, Dahlblom & Peterson (2000) and Serrano (2000). 
Simulations using FEM on wooden components involve some special considerations 
when it comes to modelling the material behaviour as compared to FEM modelling 
dealing with components made of manufactured materials such as metallic materials such 
as steel or nonmetallic materials such as plastic. FEM and continuum mechanics are in 
general based on the condition that the material within a solid body (a continuum) is 
continuous, i.e., homogeneous (i.e., there are no holes within the body). Manufactured 
materials are normally considered homogeneous, but also uniform, and their properties 
are often standardized. Uniformity means that the material properties do not vary within 
the body in question (unless the state of the material varies). A standardized material has 
well-defined properties that are not allowed to vary much, and variations of properties 
outside of a small, allowed span lead to rejection of the material. Efficient production of 
parts or structures, especially mass production, is facilitated by the use of materials that 
are uniform and standardized.  

Wood and other biological materials are, on the contrary, materials with widely varying 
properties. Sources of variation between wood pieces can be, for example, variations in 
knot size, density and amount of compression wood. There are also large variations within 
a wood piece—each wood piece is an individual, and wood is basically not a uniform, 
homogeneous or standardized material. The wood manufacturer (i.e., the sawmill) may 
sort the boards into different quality classes by visual inspection by, looking at the outer 
surfaces or by measuring the deflection of the boards under a specified load. In this way a 
certain kind of uniformity and standardization is achieved, but only in terms of one or a 
few global, mean properties of the boards such as bending stiffness or number and size of 
knots. No uniformity is today achieved on a smaller scale level, i.e., within the boards.  

3.7 Validation and measurements 
Simulations based on different model assumptions are not very useful if they don’t 
correlate with the true behaviour. When studying local three-dimensional (3-D) 
characteristics and behaviour such as fibre direction and MC in reality, a sophisticated 
measuring technique is needed. At LTU Skellefteå there has been a medical X-ray 
Computed Tomography (CT) scanner (Somatom AR.T.) installed since the middle of the 
1990s. Many research projects have used this equipment over the years. This tool has 
proven to be very useful in development and validation of simulation models (paper 1 and 
paper 3). The CT measurements give 3-D density information as a function of time, e.g., 
during drying of a wood piece. 
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3.8 Diffusion, elasticity, plasticity, creep and mechanosorption 
Real material behaviour is often complex and hard to describe in mathematical terms, 
especially if the dependence of stress, temperature and MC is to be included. It is 
advantageous to use the simplest and most well-established material models as possible, 
such as diffusion, elastic, plastic or creep models, when modelling material behaviour. 
Diffusion, elasticity, plasticity and creep are classical, well-defined phenomena that are 
theoretically deducible or explainable from a micromechanical point of view. Also, they 
give results that agree with experimental results for many types of materials, e.g., 
manufactured materials such as metals and plastics. However, another approach is to use a 
material model that makes simulation results agree with experimental results and not to 
focus on whether the material model can be explained from a micromechanical point of 
view. Instead, the material model may be seen as a mathematical construct whose purpose 
is to create good simulation results. 

Elasticity is described in general terms by Timoshenko (1970). Elastic materials deform 
under load, but return to their unloaded configuration after removal of the load. Elastic 
deformations in metals are due to small movements of atoms in the crystal structure due 
to loading and the return of these atoms to their original positions after unloading. Elastic 
deformations in wood are in the same way due to movements of wood polymers due to 
loading and the return of these wood polymers to their original positions after unloading 

Plastic deformations are deformations that are irreversible; i.e., the deformations are 
permanent and do not disappear. Irreversible deformations make it possible to reduce or 
even eliminate the distortions of a stud or board. Modelling the irreversible material 
behaviour in a realistic way is essential for valid simulations of wood-drying 
deformations. General plasticity theory and strength theory are discussed by DeTeresa & 
Larsen (2003); Han & Reddy (1999); Hill (1948); Khan & Huang (1995); Lubliner 
(1990); Oller, Car & Lubliner (2003); Sonnen, Laval & Seifert (2003) and Tsai & Wu 
(1971). Wood plasticity is discussed by Babeshko & Shevchenko (2005); Clouston & 
Lam (2001, 2002); Hanhijärvi & Mackenzie-Helnwein (2003); Hammoum & Audebert 
(1999); Kharouf, McClure & Smith (2003); Mackenzie-Helnwein & Hanhijärvi (2003); 
Mackenzie-Helnwein, Eberhardsteiner & Mang (2003, 2005); Moses & Prion (2004); 
Thomas (1983) and Hu (2005). Plastic materials also deform due to loading, but they stay 
deformed after removal of the load. Plasticity in metals is due to the movements of 
dislocations and the resulting permanent rearrangement of atoms in the crystal structure. 
Plasticity in wood does not have to do with dislocation movements, but is instead due to 
other permanent rearrangements of material (Mackenzie-Helnwein, Eberhardsteiner & 
Mang 2003) that reveal themselves by a nonlinear stress-strain curve after exceeding a 
yield stress and by permanent deformation after unloading.  

Materials that creep will also deform under load and stay deformed after removal of the 
load, but the difference between plastic and creep deformation has to do with time. Creep 
is a time-dependent phenomenon that results in an increasing deformation with time, 
whereas plasticity is not time dependent; i.e., the deformation, if any, is immediate. 
Elastic deformations will appear no matter how small the load is, but a load that exceeds a 
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certain yield limit is necessary for plastic deformations to be of importance. Creep 
deformations are normally only of significance for load cases with high temperatures or 
long duration of loads, or both. 

Mechanosorption is a phenomenon that occurs in wood (and other sorptive materials) due 
to stress in combination with a change in MC. The result of mechanosorption is an added 
strain increment. Some experiments indicate that the added strain increment is always 
positive (i.e., in the same direction as the strain due to the stress), no matter the sign of the 
MC increment. Experimental results, possible explanations and models for mechanosorp-
tion are discussed in papers by Armstrong & Christensen (1961); Grossmann (1976); 
Hanhijärvi (2000); Hoffmeyer & Davidson (1989); Houska & Koc (2000); Hunt (1999); 
Kowalski & Musielak (1999); Muszynski, Shaler & Davids (2005); Mårtensson & 
Svensson (1997); Navi, Pittet & Plummer (2002); Ranta-Maunus (1990); Salin (1992); 
Svensson & Mårtensson (2002) and Svensson & Toratti (2002). The added strain 
increment terms in the theoretical mechanosorption models mentioned here are mostly 
proportional to stress times the increment of MC or the absolute value of the increment of 
MC. However, an “ordinary” term of such kind also appears in the incremental form of 
elastic strain-stress equations due to the moisture dependence and temperature depen-
dence of the material coefficients (see the deductions in later theory sections of this thesis, 
pp. 21 ff., and especially the last two terms of Eq. (10) and (29)). Rosenfield & Averbach 
(1956) describe the appearance and effects of this ordinary term, which they call a stress-
dependent expansion coefficient. Some papers describe mechanosorption via an added 
strain-increment term due to mechanosorption, but no ordinary term that indicates that the 
ordinary term is included in the mechanosorption term. Other papers include both the 
ordinary term and an added term due to mechanosorption. At any rate, what seems to be 
clear is that experiments reveal that stress in combination with MC changes lead to 
unexpected and permanent additions of strains and that the elastic material model with an 
ordinary strain increment term is not capable of explaining that. Unfortunately, no 
physical explanation with a derivation of a mechanosorptive strain increment term from a 
theoretical and micromechanical point of view seems to exist. Without such a theoretical 
derivation, any addition of a term is just the addition of an experimental correction term 
that takes care of deviations between experiments and the elastic-plastic and creep terms. 
Such correction terms are a type of “curve-fitting terms” that do not explain the 
mechanosorption phenomenon; they just improve the correlation between theory and 
experiment in a certain range. Thus it may be concluded that mechanosorption seems to 
be a phenomenon whose effects on strain may be modelled in several ways, but for which 
a wholly clear explanation is still lacking.  

Drying behaviour was simulated with a diffusion model (paper 3, paper 4). This model is 
believed to be appropriate if the MC is lower than FSP and capillary transport is not 
dominating. Above FSP the diffusion model is not as good as below FSP, since capillary 
water transport dominates. However, since the focus of this work was on the regime 
below FSP, the shortcomings of the diffusion model above FSP were accepted, and the 
diffusion model was used for the regime above FSP as well. The motivation was that 
there was no shrinkage that contributed to deformations and stresses above FSP. The 
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diffusion coefficient was allowed to be dependent on MC, temperature and distance from 
surface. Above FSP a high diffusion coefficient was used to simulate capillary water 
transport.

The material modelling in the deformation model was done with elastic (paper 2) and 
elastic-plastic (paper 4) material models. The use of an elastic model was obvious, since 
wood is generally classified as elastic. The use of the plastic model was due to the 
necessity of including in paper 4 an ingredient that can give permanent deformations. 
Plasticity is believed to be important especially at the high temperatures used in kiln 
drying of wood. Creep and mechanosorption models were not included. 

3.9 Linear elastic-plastic constitutive equations for orthotropic 
materials

In paper 2, wood was treated as a linear elastic orthotropic material and in paper 4, wood 
was treated as a linear elastic- ideally plastic orthotropic material with a Tsai-Wu yield 
function. The material coefficients were dependent on temperature T and moisture content 
u, and strains were small. In the following, derivations of the constitutive equations for 
linear elastic and linear elastic-plastic orthotropic materials are shown. The derivations 
are made step by step in a pedagogic way, starting with the simplest 1-D linear elastic 
case and ending with the most complicated 3-D orthotropic linear elastic-ideally plastic 
case used in paper 4.  
3.9.1 Linear elastic behaviour for a one-dimensional (1-D) case 
Strain  is a state function of stress , temperature T and moisture content (MC) u,

).,,( uT      (1) 

(Note that a superindex e on strain, normally designating elastic strain, is skipped here in 
for the sake of clarity, since no plastic or other type of strain is involved so far). Thus, 
there are 3 independent state parameters that can be chosen arbitrarily among the 4 
candidates , , T and u. Any 3 state parameters describe fully the state or the condition of 
a point in the material, and the fourth state parameter is given by the state function (1). 
The existence of a state function (1) means that the material state at a certain moment in 
time does not depend on the previous history of the state parameters for the point. In other 
words, the loading path to reach the state in question is not important, but instead, the 
state only depends on the instantaneous value of 3 independent state parameters at that 
moment in time. Such a material (i.e., a material that consists of such points) behaves 
elastically.  

The strain  in a point in an elastic material returns to its initial (start) value after a loading 
scheme is applied to it (and thus the configuration of the whole of a body in question 
consisting of such elastic points), provided that , T and u returns to their initial values at 
the end of the load scheme. The load scheme may consist of arbitrary variations of , T 
and u, but the loading history does not influence the final state, which is equal to the 
initial state. 
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The constitutive equations for an elastic, path-independent material can be written in a 
total form, i.e., with a state function as in (1). This total form of the constitutive equations 
may also be transformed into a differential form, as will be shown below. On the other 
hand, as we will see below for an elastic-plastic material, the constitutive equations for a 
non-elastic, path-dependent material cannot be written in a total form, i.e., with a state 
function as in (1). Only a differential form of the equations is possible, and the final state 
must be calculated via an integration of the differential form of the equations. 

Time is not involved in any way in the behaviour of an elastic material. The load scheme 
is a sequence of variations of the parameters , T and u one after the other. Time is not 
needed as a parameter in any equation. However, it is often fruitful to think of time as a 
parameter to keep track of the chain of events in a load scheme, and to use time as a 
parameter to register in the order in which changes in loading take place. For the elastic-
plastic material described below, too, time is not involved. Contrary to many textbooks, 
the use of time derivatives dt and rate descriptions such as , and u  has been avoided 
in the text below due to the fact that time is not involved in the material behaviour, and 
also because it is believed that the clarity of the descriptions of the theory increases if 
rates of variables are not introduced when not necessary. Instead, differentials are used 
here. Since time is not involved, creep is not included in the material behaviour. 

Since  is a state function, there is a perfect differential 

.
,,,

du
u

dT
T

dd
TuuT

  (2) 

Measurements on a real piece of wood of the relation between a small change of strain d
and the corresponding small change of stress d  when keeping T and u constant reveal 
that d /d  is approximately constant within a certain range - s <  < s, where s is the 
yield stress. Thus we may define E = E(T, u) to be the elastic modulus (not a function of 
) within that range. and we define the flexibility 

),(
1

, uTEuT
.    (3) 

This means that in addition to the elasticity assumption, we have now added the linearity 
assumption and defined a linear elastic material. We also define 

),,(
,

uT
T u

  and  ),,(
,

uT
u T

  (4a, 4b) 

to be the thermal expansion coefficient and the moisture expansion coefficient, 
respectively. Note that these two coefficients  and  depend on  and are not the usual 
expansion coefficients that are normally measured and tabulated in handbooks (see 
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Rosenfield & Averbach (1956) for information about stress-dependent expansion 
coefficients). However, since E does not depend on , we may achieve an expression for 
the dependence of  and  on  as follows: the order of differentiation is immaterial when 
differentiating two times, which means that  

.11
2 T

E
EETTT

  (5) 

Since E is not a function of , we may integrate (5) to give 

),,(),(),,( 20 uT
T
E

E
uTuT    (6) 

where 0(T,u) is the (true) thermal expansion coefficient at zero stress. In the same way 
we have 

.11
2 u

E
EEuuu

  (7) 

Since E is not a function of  we may integrate (7) to give 

),,(),(),,( 20 uT
u
E

E
uTuT    (8) 

where 0(T,u) is the (true) moisture expansion coefficient at zero stress. 0 and 0 may be 
taken from experiments as 

),(0
,0

uT
T u

  and  ).,(0
,0

uT
u T

  (9a, 9b) 

These two coefficients 0 and 0 do not depend on . The results (6) and (8) together with 
(2) give an incremental form of the linear elastic constitutive behaviour of the material: 

.200 du
u
EdT

T
E

E
dudT

E
dd   (10) 

The expression inside the parentheses is equal to the differential dE, i.e., the change of the 
elastic modulus during the increment. The last term is proportional to stress and MC 
change. Kowalski & Musielak (1999) call such a term “mechanosorptive” and point out 
that such terms exist when “one assumes the material coefficients to be moisture 
dependent.” Since we are dealing with an elastic, path-independent material, we may get 
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the total form of the linear elastic constitutive behaviour of the material as follows: we 
integrate between an initial (starting) state (with index 0) and a final state (with no index) 

,00

200

dudT
E
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du
u
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E
dudT

E
dd

which gives 
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where
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is the mean thermal expansion coefficient at zero stress between T0 and T. In the same 
way 
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is the mean moisture expansion coefficient at zero stress between u0 and u. It is these 
mean expansion coefficients that are normally measured and tabulated in handbooks. 
Often, mean values of measured expansion coefficients at zero stress are presented as 
mean values between a reference value (temperature or MC) and a tabulated value. If the 
reference state does not agree with the initial state, then the following expressions are 
used:
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and
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where ),,(0 uTT ref

ref
m  and ),,(0 ref

ref
m uuT are the mean thermal expansion coefficient at 

zero stress between T and Tref at moisture content u and the mean moisture expansion 
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coefficient at zero stress between u and uref at temperature T, respectively. If (14) and (15) 
are inserted into (11) we get 

0 E
0

E0

(T Tref ) 0m
ref (T,Tref ,u) (T0 Tref ) 0m

ref (T0,Tref ,u)

(u uref ) 0m
ref (T,u,uref ) (u0 uref ) 0m

ref (T,u0,uref ).
 (16) 

In order to use the incremental form of the linear elastic constitutive behaviour (10), we 
may sometimes need to calculate the (true) values of the temperature and moisture 
expansion coefficients at zero stress from the corresponding values of the mean expansion 
coefficients at zero stress. In that case, (12) gives  
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and (13) gives 
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Normally, it is the mean values of the expansion coefficients that are measured and 
tabulated in handbooks, but transformations between mean values for different reference 
values and between (true) values and mean values are possible using (12)–(18). However, 
in order to increase the clarity of the description in the following text, we assume 0m and 

0m to be constants and set 0 = 0m and 0 = 0m. Then (11) is the total form of the linear 
elastic constitutive behaviour, and (10) is the incremental form.  

3.9.2 Linear elastic behaviour for a three-dimensional (3-D) case 
The strain vector ),,( uT is a state function of the stress vector , the temperature 
T and the MC u, and we get the perfect differential vector 

d
T ,u

d
T

,u

dT
u

,T

du.  (19) 

Experiments measuring the relation between stress and strain components with T and u
kept constant (dT = du = 0) reveal that the elastic flexibility matrix (symmetric) may be 
expressed as 
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F F(T,u)
T ,u
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0
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G23

.

      
     (20) 
We assume linear elasticity by setting the Poisson’s ratios ij as constants and the elastic 
modules Ei and Gij as functions of T and u, but not , at least within a range where is
“below yield” (we will return to the limits for this linear elastic range later). The thermal 
expansion coefficient vector is  

T
,u

( ,T,u) ( 1 2 3 4 5 6)T ,  (21) 

and the moisture expansion coefficient vector is 

u
,T

( ,T,u) ( 1 2 3 4 5 6)T ,   (22) 

where the elements of the vectors are functions of , T and u (note that there are no zero 

elements in these vectors). Now, since F  is not a function of , then we may express the 
 dependence of and as follows: the order of differentiation when differentiating 

two times is immaterial, which means that 

T T
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    (24) 
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i.e., a diagonal matrix with the elements shown in (24) on the diagonal. Since F  and 

TM are functions of T and u and not functions of , we may integrate (23), and after 
some manipulation we get 

TMFuTuT ),(),,( 0    (25) 

where
T

uT )000(),( 0
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10  is the (true) thermal expansion coefficient 

vector at zero stress. In the same way for we get 
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i.e., a diagonal matrix with the elements shown in (27) on the diagonal and zeroes 

elsewhere. Since F  and uM are functions of T and u and not functions of , we may 
integrate (26) and get 
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where
T

uT )000(),( 0
3

0
2

0
10  is the (true) moisture expansion coefficient 

vector at zero stress. Now, (19) with (20), (25) and (28) gives the incremental form of the 
linear elastic constitutive relation 

,00 duMdTMFdudTdFd uT    (29) 

to be compared with the 1-D relation (10). Eq. (29) may be integrated between an initial 
state (with index 0) and a final state (with no index) as follows:  

dudTFddFdudTFd

duMdTMFdudTdFd uT

0000

00
 (30) 
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which gives the total form of the linear elastic constitutive relation 

)()( 0000000 uuTTFF mm   (31) 

where

dTuT
TT

uTT
T

T

m ),(
)(

1),,(
0

0
0

00     (32) 

is the mean thermal expansion coefficient vector at zero stress between T0 and T. In the 
same way, 

dTuT
uu

uuT
u

u
m

0

),(
)(

1),,( 0
0

00     (33) 

is the mean moisture expansion coefficient vector at zero stress between u0 and u. If there 
is a need for a change of reference values or a need to transform between (true) values and 
mean values for the expansion coefficients, then the same discussion is valid in this 3-D 
case as for the 1-D case above; i.e., similar equations as (12)–(18), but for the 3-D case, 
must be used. However, in the following text we assume m0  and m0 to be constant 
vectors and just call them 00m  and 00m and use (31) as the total form of the 
linear elastic constitutive behaviour and (29) as the incremental form.  

A simplified form of the constitutive equations can be used when the thermal expansion is 

assumed to be negligible in comparison to the moisture expansion, but F still depends on 
both T and u. In that case, 000m and we get 

duMdTMFdudFd uT0   (34) 

as the incremental form of the constitutive equation and 

0 F F 0 0 0m (u u0)   (35) 

as the total form. These two constitutive equations were used in paper 2 and are used in 
what follows for the elastic part of the behaviour of the elastic-plastic material. The 
following theory for elastic-plastic materials was used in paper 4. 

3.9.3 Yield limits for a linear elastic 3-D case 
A yield limit for 3-D orthotropic materials is assumed to be in the form of a yield function 

,.....),,,( cbaff  which is = 0 when 0 and which is = 1 at the yield limit. a, b, c,
… are a set of coefficients that are evaluated from the experimental yield limits measured 
with various combinations of stress components. Hill’s yield condition (Hill 1948) 
assumes an orthotropic material that has equal absolute values of the yield limit in 1-D 
tension and compression; i.e., the yield condition is symmetric for each of the stress 
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components. It is also assumed that addition of a hydrostatic stress condition will not alter 
the value of the yield function f, i.e., an assumption that the plastic deformation is 
incompressible. These assumptions result in 

f F( 22 33)2 G( 33 11)
2 H( 11 22)2 2L 23

2 2M 31
2 2N 12

2 .
     (36) 

The root sign is optional, which means that another yield function without the root sign 
might be used instead and give the same yield limit. A disadvantage with the root sign is 
that f is undefined if the value under the root sign becomes negative. The 6 coefficients F, 
G, H, L, M and N are evaluated most easily using 1-D test results for the 6 stress 
components separately. Hill’s yield function is of the polynomial type because the 
expression under the root sign contains a polynomial of the stress components, which 
contains no constant term and only some linear and second-order terms due to the 
assumptions of symmetry and insensitivity to hydrostatic stress.  

A general, second-order polynomial function, often called the Tsai-Wu yield function 
(Tsai & Wu 1971), using all linear and second-order terms is 

jiijii fff . (summation on i and j) i, j = 1, 2, 3, 4, 5, 6 (37) 

This yield function was used in paper 4. Here the denotation is such that 654 ,, are the 
shear stresses 12, 13, 23, respectively. fi and fij = fji are coefficients, and this polynomial 
contains a total of 6 linear and 21 second-order independent terms. From this general 
equation a number of special cases may be deduced for different kinds of materials. Some 
or many of the coefficients may be set to zero due to assumptions of, for example, 
symmetry of yield in tension and compression or other types of restrictions. The 
remaining coefficients must be experimentally determined by performing 1-D tests, but 
possibly also by performing 2-D and 3-D tests. A special form of this polynomial function 
is used in our case (paper 4). It is achieved if we assume symmetry with respect to the 
sign of the shear-stress components, but no symmetry for the normal-stress components. 
In that case, all coefficients that have one index equal to 4, 5 or 6 are zero, and we get a 
total of 12 (3 linear, 6 quadratic and 3 mixed second-order) nonzero terms in (37). With 1-
D yield limits (3 shear-stress yield limits, 3 normal-stress yield limits in tension and 3 
normal-stress yield limits in compression) we may evaluate 9 material coefficients. They 
are

3,2,1,1,
)(

iff
iscisd

ii
iscisd

iscisd
i   (38) 

and

6,5,4,1
2 if
is

ii     (39) 
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where isd is the yield limit in tension for 1-D loading of stress component i, isc is the 
yield limit in compression for the i:th component of stress and is is the yield limit in both 
tension and compression for 1-D loading of stress components i. The remaining 3 
coefficients are f12, f13 and f23, which describe the coupling effect between stress 
components 1, 2 and 3 with reference to the yield limit. If there is a lack of 
experimental data, then they may be set to zero, as was the case in paper 4. The ratio 

1
isd

isc , i = 1, 2, 3 is assumed to be constant. 

A simple polynomial form of the yield function is achieved if symmetry is assumed for all 
stress components, which makes all linear and mixed (i  j) terms disappear; i.e., fi = 0 for 
all i and fij = 0 for all i  j, and we get 

2

6

6
2

5

5
2

4

4
2

3

3
2

2

2
2

1

1

ssssss
f   (40) 

where the 6 coefficients have been evaluated, and the six yield stresses are put into the 
yield function.  

3.9.4 Behaviour after yield for a linear elastic-ideally plastic material, 3-D 
case

Often, it is advantageous to think of as a vector in 6-D space and f as a yield surface in 
that space, which limits the size of  to be within the yield surface (see for example, 
Lubliner (1990)). The limit for the size of depends on which direction in space  has. 
Yield surfaces in general may be visualized as some kind of distorted “balloons”, 
“cylinders” or “curtains” that surround the origin of coordinates of a 6-D coordinate 
system. A yield surface may be closed (i.e., the ”balloon” case) but may also be open (i.e., 
the ”cylinder” or “curtain” case) in certain directions in space. The Hill yield surface is 
open in the directions of an addition of a pure hydrostatic stress, since the yield condition 
is independent of hydrostatic pressure (or tension). The modified yield surface is a closed 
ellipsoid in 6-D space with its principal axes along the directions of the individual stress 
components. The state is elastic as long as  is within the yield surface, but eventually, 
when in a loading scheme touches the surface, then the elastic state is at its limit and 
yielding may begin or may not begin, depending on what happens in the next loading 
increment. Since  is not allowed to penetrate the yield surface and go into the space on 
the outside of the yield surface, then we realize that some stress increments are 
impossible. The only allowable stress increments are those increments that will be such 
that  will decrease and re-enter the elastic space or such that  will remain on the yield 
surface during the increment. If the next increment d  is such that the differential 

df df
d

d 0, then the material point is unloaded elastically into an elastic state. If 
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the next increment d  is such that the differential df df
d

d 0, then the next 

increment is elastic-plastic, and the material point will exhibit a plastic strain increment; 
i.e., plastic flow will occur. If the next increment d  is such that df > 0, this will lead to 
an impossible stress state, since f > 1 is not allowed, and thus this d  is impossible. This 
requirement puts restrictions on d  and on the plastic strain increment. For an elastic-
ideally plastic material, the yield surface is constant and permanently fixed in 6-D space 
(except for movements due to dependence on T and u). As an example of an impossible 
loading condition df > 0 for an elastic-ideally plastic material, we may think of a situation 
in 1-D an attempt is made to increase the load in a 1-D tension test when the test piece is 
already loaded to the yield limit. Clearly, this is an impossible kind of loading, since you 
can’t increase the load on a structure that is already bearing its ultimate load.  

3.9.5 Behaviour after yield for a strain hardening linear elastic-plastic 
material, 3-D case 

If the material is linear elastic-plastic and strain-hardening, then the yield surface may 
move and expand in 6-D space due to plastic flow, and in this case there is no difficulty 
applying an arbitrary d , since the yield surface may move with d  or expand in a way 
such that  will still lie on the yield surface at the end of the load increment. Strain 
hardening can be introduced by assuming that the yield limits that are used to determine 
the coefficients in the yield function dependent on one or several strain-hardening 
parameters, such as the effective (or accumulated) plastic strain (Bathe 1982).  

In a 1-D monotonic loading case of an isotropic material, the yield limit in tension 

depends on the plastic strain, p
sdsd h

hE
)1(

0  where 0
sd  is the virgin yield stress, H

= hE is the plastic modulus, E is the elastic modulus, h is the ratio between the plastic and 
elastic modulus and p  is the plastic strain (see Fig. 5). For a 3-D situation with an 
isotropic material, we may define an effective plastic strain. 

p
e

p
e d  where 

ppTp
e ddd

3
2    (41) 

is the effective plastic strain increment and 
p

d  is the plastic strain increment. With these 
definitions, the plastic work increment during a plastic increment is 

p
ee

pTp dddW      (42) 

where e is the effective stress according to von Mises. This definition of the effective 
plastic strain and its increment is also used below for the orthotropic case. As will be 
shown below, this procedure will lead to a definition of an effective stress for the 
orthotropic case.  
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Fig. 5. Stress-strain curve for 1-D loading and unloading of a linear elastic-plastic 
strain-hardening isotropic material. 

For orthotropic materials with equal yield stresses in 1-D compression and tension and 
equal ratio between the plastic modulus and the elastic modulus for all stress components, 
we assume a yield stress vector  

p
esdsd E

h
h

1
0

     (43) 

where E E1 E2 E3 G12 G13 G23
T  is a vector containing the elastic and 

shear moduli, 
0
sd  is the virgin yield stress vector and h is the ratio between the plastic 

modulus and the elastic modulus. This defines a sort of orthotropic hardening in which the 
yield surface expands in all directions (but not equally much in all directions) due to a 
plastic strain increment at one particular point on the surface. If there are different 1-D 
yield stresses in compression and tension for the normal stress components, but not for the 
shear stress components, then  

p
edcsdcsdc E

h
h

)1(
0

    (44) 

0
sd

sd

1

E

1
H

E
sd

p

E
sd
0

H
sdsd
0
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where T
dc GGGEEEEEEE 231312332211  is a vector containing the 

elastic and shear moduli and 
T

sssscsdscsdscsdsdc 231312332211
0

 is the virgin yield 

stress vector. 

There exists no unambiguous, effective stress measure or effective yield-stress measure 
for 3-D orthotropic materials. However, we may define an effective yield-stress measure 
(scalar value) by assuming the same effective plastic strain increment definition as above 
(41) and by calculating an effective yield stress related to the effective plastic strain 
increment as 

es
a dW p

d e
p

T
d

p

2
3

d
pT

d
p

.    (45) 

3.9.6 Linear elastic-plastic behaviour for a 3-D case 
Plastic behaviour is path dependent, and there exists no state function to describe the 
strain as a function of some state parameters. Thus the constitutive equations must be 
stated in incremental form. At first we separate the total strain increment into elastic and 
plastic strain increment, 

d d
e

d
p
,    (46) 

and use (34) for the calculation of 
e

d  (note that from now on we use a superindex e on 
strain to designate elastic strain, a superindex p on strain to designate plastic strain and no 
superindex to designate total strain). Then 

p
d may be deduced from some experimental 

observations (“postulates”) about the plastic behaviour. A usual assumption in plasticity 
theory is that increments of plastic strain are directed perpendicular to the yield surface at 
the point where the stress vector touches the yield surface and that the yield surface is 
convex. Both assumptions are due to (Drucker’s) energy postulates (Lubliner 1990; Khan 
& Huang 1999). If we adopt those postulates we get 

d
p f

     (47) 

where  is a positive constant that can be determined by using the fact that df = 0 during a 
plastic strain increment.  
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The yield function f is a function of  and the yield stress vector sdc . For a strain 
hardening material, sdc  is a function of p

e  and quantities that are functions of T and u,
and we get ).,,,()),,(,( uTfuTff p

e
p

esdc  Then df = 0 gives 

.0du
u
fdT

T
fdfdfdf p

ep
e

T

  (48) 

Now, multiplying (34) with C and using (46) and (47) we get 

dTMduCMfdCd Tu 0)(   (49) 

where
1

FC is the elastic stiffness matrix. We also have 

f
e
p

f
s

T
s

e
p .    (50) 

The notation s  stands for either sd  or sdc,  depending on which yield function is 
used, either a yield function with equal or one with differing yield stresses in tension and 

compression. 
s

f  can be calculated from the actual yield function, and for the Hill 

yield function (36) we get for a normal component 

3
1

32321
2
1

1

))((

ss

f     (51) 

and for a shear component 

f
12s

12
2

12s
3 .    (52) 

The other components are achieved by permuting indices. For the Tsai-Wu yield function 
(37–39) we get 

sdsdsd

f
1

1
2
1

1

1

11
2
1   and  

f
1sc

1
2 2

1

1sd
2 1 1

1sd

. (53, 54) 

The shear-stress components are the same as in (52). All other components are achieved 
by permuting indices. For the modified yield function we get for all components 
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f
1s

1
2

1s
3 ,     (55) 

and the rest of the components are obtained by permuting indices. From (43–44) we get 

E
h

h
p

e

sd

1
 or ,

1
dcp

e

sdc E
h

h  depending on which yield function is used, and 

from (41) and (47) we get 

.
3
2

3
2 fddd

ppTp
e    (56) 

The third and fourth term of (48) are 

T
E

h
h

T
f

T
f

T
f p

e
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ss

s
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  (57) 

and

.
1

0

u
E

h
h

u
f

u
f

u
f p

e
s

ss

s   (58) 

If the results (49–58) are put into (48) and the equation is solved for , we get 

EffhfCf

u
E

h
h

uT
E

h
h

T
fduMdTMduCdCf

T

s

T

p
e

sp
e

s
T

s
uT

T

3
2

11

00

0

   
     (59) 

This value of  may be put into (49), and this defines the incremental constitutive 
equation for a linear elastic-plastic material as ),,,( uTddd . However, as we 
will show below, there is also an alternative, iterative technique to calculate the value of 
and this alternative technique was used in paper 4. 

3.9.7 Use of constitutive equations in FEM program 
Here is a description of how the constitutive equations derived above are used in the
ABAQUS FEM programme. In a nonlinear finite-element program we have on the global 
structural level the equation 
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pq       (60) 

to solve, where q is the nodal force vector that is due to the element stresses, also called 
the inner nodal force vector, and p is the (known) vector of applied nodal forces, also 
called the outer nodal force vector (Bathe 1982; ABAQUS User Manual 2003). Eq. (60) 
expresses the sought equilibrium between outer applied forces and inner forces due to 
stresses in the structure. The inner nodal force vector is a nonlinear function of the 
displacements )(qq . Here,  is the sought vector of unknown node displacements. 
We use an incremental technique to solve this nonlinear equation, which means that we 
load the structure gradually in small load increments such that the final load is p . Now, 
in order to create an iterative solution scheme, we reason as follows: Suppose that the true 
solution

1j
 at load increment j - 1 is known; i.e., 

11
)(

jj
pq . At the next load 

increment j we must solve the nonlinear system of equations 
jj

pq )( to get the 

unknown true solution 
j
. We calculate an approximation to this true solution by using 

an iterative Newton-Rhapson method wherein we assume that we know an approximate 

solution
j
i  at iteration i at load increment j. The true solution is 

jj
i

j
c where

j
c is

the unknown (small and exact) correction vector that will give us the true solution
j
.

From (60) we have 

q( i
j

c
j
) p

j
0.    (61) 

Eq. (61) may be rewritten as a vector function (a force vector function)

F F( i
j

c
j
) 0,    (62) 

and this function may be expanded as a Taylor series 

F( i
j
) F i

j

c
j

................. 0.   (63) 

Excluding the higher order terms we get approximately 

F i
j

c i
j

F( i
j
),     (64) 
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i.e., a linear system of equations to be solved for an approximate correction vector 
j
ic at

iteration i. Then the next (better) approximate solution is 
j
i

j
i

j
i c1 . In that way (64) 

is solved over and over again in an iterative way until the corrections are small enough. 
As an initial solution in the first iteration of a load increment, we may use the final 
solution for the previous load increments, i.e., 

1
1 1

j

n

j
j , where 1jn  is the number of 

iterations performed in the previous load increment j - 1. As an initial solution in the first 
iteration in the first load increment, we may use the zero vector. If the solution does not 
converge after a reasonable number of iterations, then the current load increment may be 
decreased and the solution can be restarted in the hope of getting convergence for a 
smaller load increment. An example of the use of a Newton-Rhapson method for a 1-D 
example is shown in Fig. 6.  

Fig. 6. Newton-Rhapson method used to solve a 1-D equation. Bold line is the unknown 
sought function p( ). Two increments of load p are shown with the solutions 1 and 2.

Looking at (64) and the definition of F  in (61–62) we see that the right hand side of (64) 
is the unbalance load vector 

F ( i
j ) p

j
qi

j
,     (65) 
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which expresses the unbalance in equilibrium that is to be reduced to zero. The left hand 

side is the Jacobian matrix 
F i

j

, also called the tangent stiffness matrix, times the 

approximate correction vector c i
j
. In order to save time and computational effort, it is 

possible to use a Jacobian matrix that is not the exact one or to choose not to update the 
Jacobian matrix in every iteration i, but instead to update the Jacobian only at the start of 
each load increment or after a fixed number of iterations. In that case the convergence 
may be slower, but still the right solution is found eventually (if the solution converges). 
Looking at the effects on the constitutive equations of the description above we see that 

from the approximate displacement vector 
j
i  we will be able to calculate a 

corresponding total strain vector with the ordinary displacement to strain equations used 
in FEM programs. Now, the increment in the total strain vector is the current total strain 
vector minus the total strain vector in the last but one load increment, and with this total 
strain increment vector we may use (49) to calculate the corresponding stress increment 
vector and thus the stress vector. From the stress vector, the corresponding inner nodal 

force vector may be calculated, which is 
j
iq  in (65). The Jacobian matrix 

j
iF  is the 

change of the unbalance load vector with respect to the change of the nodal 
displacements. The Jacobian matrix can be calculated from the elastoplastic stiffness 

matrix C
EP

i
j

, which is derived from (49) and (59), by putting du = dT = 0, as 

C
EP

i
j

C
C f f T

C

f T

C f h 2
3

f f
s

T

E
. (66) 

Now, in that way we see that the main FEM equation to solve is (64), and the constitutive 
equations that are involved are (66) in order to calculate the Jacobian matrix and (49) 
together with (59) in order to calculate the stress increment d  that will arise from a 
given total strain increment d .

3.9.8 Iterative procedure for the calculation of 
Instead of using (59) to calculate , we may use an iterative technique. Assume that the 
state of the material at a certain load increment is calculated. The stress vector is on the 
yield surface, and we assume that there is going to be plastic flow in the next load 
increment. In the iterative FEM procedure shown above, we then go on by testing a given 
strain increment and seek to find out what the resulting stress increment and  value will 
be. The solution is the  value that will make f = 1 at the end of the increment. Thus we 
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may write that 1)(ff  is the equation to solve. This equation may be solved 
numerically with any numerical equation-solving method, e.g., the Newton-Rhapson 
method as described above. In this case we get, at iteration i,

i 1 i
f ( i) 1

df
d

.    (67) 

The derivative in the denominator can be calculated numerically by using the two f values 
that are closest to one. As starting values for the  iterations we may use any two  values. 
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4 Results 

4.1 Paper 1: Method to compute fibre directions from computed 
tomography images 

Knowledge of local fibre directions is essential for modelling wood strength and stiffness. 
The radial, tangential and fibre directions are the orthotropic directions in a point, and 
they determine in which direction stiffness is high and in which direction stiffness is low. 
In wood, the fibre direction is the direction of highest stiffness and strength, and the 
tangential direction is the direction of lowest stiffness and strength. Since the orthotropic 
directions vary from point to point in a tree and thus also in a board, a nondestructive 
method to measure orthotropic directions locally at every point in a wood piece is 
desirable.

A simple and traditional method of measuring fibre direction is by measuring the spiral 
grain angle by scratching the surface of a log or a board with a needle and measuring the 
angle between the scratch mark and the pith line (Harris 1989). In a more modern method, 
a laser light in principle does the same thing as the needle (Nyström 2000) and gives a 
measure of the spiral grain angle. A theoretical and approximate way of calculating fibre 
directions is to assume a cylindrical or conical log shape and to calculate the orthotropic 
directions (see section 3.3) by using the pith line position, the conical angle and the spiral 
grain angle. However, this method requires several measurements on several radii in order 
to get the fibre directions throughout the volume of the body, and to attain that we will 
have to cut up the wood piece, and thus the method becomes a destructive method. 

CT is a nondestructive way to measure density inside a wood volume. The resolution in 
our case was about 0.5 mm in the radial-tangential plane and about 2 mm in the axial 
direction. Sepulveda, Oja & Grönlund (2002) measured spiral grain angles by using CT 
images projected on a single radius. They recognized streaks of deviant densities in these 
images and measured the angle between these streaks and the pith direction and con-
cluded that this was a method to measure spiral grain angle.  

Paper 1 describes the theory and test results of another related method to measure the 
radial, tangential and fibre direction directly, automatically, nondestructively and locally 
in points inside a wood piece. The method produces the directions from a set of 2-D CT 
images of a wood piece taken at different axial positions. The method is based on the fact 
that a spherical body (e.g., a solid ball) with constant density has no preferred directions 
when it comes to rotational inertia. In other words, such a ball will spin equally easy 
whatever spin axis we give it. In theoretical terms, this sphere has the same principal 
moments of inertia around all possible rotation axes through the centre of gravity (the 
midpoint of the sphere), and there are no unique principal directions. However, if we 
introduce a streak of material with deviant density through such a ball, then we will get a 
unique principal direction along the streak of deviant density and a corresponding unique 
principal moment of inertia with respect to rotation around this principal axis. Thus a 
calculation of the principal moments of inertia with corresponding principal directions 
will reveal if there are streaks of density in the sphere and, if so, the directions of these 
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streaks. Principal moments of inertia and corresponding principal directions (i.e., the 
principal values) are basic properties of a solid body and easy to calculate. 

Thus, for each point in the wood piece, an imaginable sphere was placed and the principal 
values for this sphere were calculated (see Fig. 7). If the result was that one principal 
value was unique compared to the other two or all three were unique compared to each 
other, then one or three streaks of deviant densities existed and had directions along the 
principal directions, respectively. However, there were things to consider in this process, 
viz., to determine the radius of the sphere and to decide exactly how much two principal 
values had to differ in order for them to be considered unique. Also, in practice, there was 
a question of whether we may get very fluctuating directions from neighbouring spheres 
that would indicate that the directions of the deviant density streaks did not coincide with 
the orthotropic directions. 

Fig. 7. CT image showing the densities for a section with normal direction approximately 
in the fibre direction. The circle is a section through the calculation sphere, and the 
radial and tangential principal directions of inertia are shown with arrows. The third, 
axial eigenvector points out of the figure in the fibre direction.

Tests of the method were performed on three wood samples. Spiral-grain angles were 
calculated from the measured orthogonal directions and compared with measured spiral-
grain angles with the tracheid-effect method (Nyström 2002). The comparisons showed 
that there was considerable spread in the output from the method, but that the mean values 
from a volume in the wood sample agreed with results of the tracheid-effect method. Fig. 
8 shows the results for one of these wood samples. 

tangentialradial
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Fig. 8. Calculated spiral grain angle as a function of radius (i.e., distance from pith) for 
individual spheres compared to values measured with the tracheid-effect method for a 
dried wood sample made of Norway spruce (Picea abies). 

The reason for the spread was probably that the method registered deviant density streaks 
and only indirectly the orthotropic directions. The deviant density streaks may point in 
various directions, and certainly not in the orthotropic directions, for all calculation 
spheres, but the results indicate that they point in the orthotropic directions in a mean 
sense.

The method is valuable for measuring local orthotropic directions in a nondestructive way 
for dried wood. The drawbacks or limitations with the method as it stands today are the 
large spread and the fact that the method was only tested on a few dried wood samples. 
The possibilities or potentials in the future are that the method can be developed and 
further improved in order to reduce spread and that it may be possible to use the method 
on green wood as well. This method or variants on it could be used with input data 
obtained with other methods than CT. 
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4.2 Paper 2: Twist of wood studs: dependence on spiral-grain 
gradient

Twist distortion is caused by spiral grain in combination with shrinkage during drying. A 
formula developed during the late 50s for a thin-walled wooden cylindrical shell (Stevens 
& Johnston 1960) gives the twist angle  as a function of the length l and radius r of the 
cylindrical wood shell, the relative shrinkage s across the grain and the spiral-grain angle
.

l
r

2s
1 s

.             

However, ordinary wood boards do not consist of cylindrical wood shells; they have only 
parts of growth rings within their cross-sections. A board sawn from the outer parts of a 
log may have rather flat growth rings with large radii, and the cross-section may only 
consist of small parts of such growth rings. The growth ring parts that are within a board 
cross-section may be more or less upright, lying or diagonally situated. This means that 
Stevens & Johnston’s formula can not accurately predict the twist of an ordinary board. It 
has been used for boards in spite of that, since no other formula for twist of wooden 
boards has existed before, and since Stevens & Johnston’s formula in many cases gives at 
least an approximate result. 

My own early FEM simulations of twist deformation revealed that for a board with a 
linear relationship between the spiral-grain angle and the radius, for a specific sawing 
pattern, we had the phenomenon that a board section with left-handed spiral grain 
throughout the cross-section might twist to the right. This was surprising at first, but I also 
soon found that there were other FEM results that showed the same tendency (Ormarsson 
1999). This phenomenon was in contradiction to Stevens & Johnston’s formula, but there 
seemed to be no explanation of the phenomenon in the literature. In order to explain it, 
theoretical analyses and corresponding FEM analyses of the twist of a cylindrical shell, a 
cylinder with and without an axial cut and a thin strip, all made of wood, were performed. 
The theoretical analyses showed that the twist of a wooden board consisted of two 
contributions that could be expressed as two terms in a formula: 

.2

0dr
dD

r
Cwl

m

m
lt

In this formula, w (< 0 for drying) is the ratio of the change of mass of the moisture to 
the mass of the dry wood, but only the moisture mass change below FSP is considered. t
and l denote tangential and longitudinal shrinkage coefficients, respectively, and they are 
defined as relative length change per change in moisture ratio w. m is the spiral-grain 

angle, and rm is the radius in the middle of the board cross-section. 
0dr

d  is the gradient 

of the spiral-grain angle (assumed to be constant in the whole of the log cross-section) and 
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C and D are two undetermined constants that are positive and of the order of magnitude 1. 
The formula was explained as follows: at first there is the effect of shrinkage of wooden 
cylinders or shells in nearly the same way as in Stevens & Johnston’s original formula, 
which results in the first term. The difference compared to Stevens & Johnston’s original 
formula is that the wood cylinders or shells (i.e., the growth rings) are not full or may 
have axial cuts. Therefore, the first term is about equal to Stevens & Johnston’s original 
formula multiplied with a reduction factor C. Secondly, there is the effect of shrinkage of 
flat growth rings when there is a spiral-grain gradient in the radial direction. This effect 
gives a second term that is new and counteracts the first term for an ordinary board (i.e., a 
board with mean properties), because the second term is proportional to the radial 
gradient of the spiral-grain angle. A Norway spruce (Picea abies) log from Scandinavia 
normally has a spiral-grain angle that starts left-handed (negative) at the pith, but turns 
right-handed (positive) with age (Säll 2002). This means that the radial gradient is 
normally positive in the whole of a log and thus also in a board sawn from a log. The sum 
of the two terms makes up the total twist of a board, and in this way there is the 
possibility that a board with a left-handed (negative) spiral-grain throughout the cross-
section might twist to the right due to the influence of the second term if the spiral-grain 
gradient is positive and sufficiently high. The first term dominates for boards that are 
sawn close to the pith, and the importance of the second term increases with distance to 
pith.

Linear FEM analyses confirmed that the results of the new formula were accurate and that 
the constants C and D were 1.05 and 0.48, respectively. However, comparisons with 
measurements by Trätek (Anon. 2003) gave C and D as 0.37 and 0.74, respectively. The 
discrepancy between linear FEM results and Trätek results showed that nonlinear effects 
are important for drying wood in practice and that linear FEM analysis is not very 
accurate. Other measurements that confirm the existence of a second term have also been 
done (Forsberg & Warensjö 2001) for boards of Norway spruce (Picea abies). These 
measurements showed that among the tested correlations, the correlation was highest for 
twist versus both gradient of spiral-grain angle and spiral-grain angle. The correlation was 
lower for twist versus spiral-grain angle alone. 

A quick and simple formula for the calculation of twist is useful, since an FEM analysis, 
which is an alternative, is often time consuming and complicated. An example of use of 
the formula could be to predict twist after drying for individual boards sawn from a log 
using measurements of the spiral-grain angle on the outside of the logs or measurements 
on the sides of the boards. Measurements with the tracheid-effect method (Nyström 2002) 
can easily and automatically be made on two sides at several points on moving boards. 
Since different measurement points lie at different distances from pith, it is possible to 
calculate a value for the gradient of the spiral-grain angle. These measurements and 
calculations of twist could be done at full production speed. 

The formula also gives a way of understanding why twist occurs, what the mechanisms 
are that give rise to twist. In that way we increase understanding of what the influencing 
variables are and which variables are most important to change if twist is to be reduced.  
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4.3 Paper 3: Local water vapour diffusion coefficient when drying 
Norway spruce sapwood. 

The first step in simulating wood-drying deformations is to use a drying model to 
simulate the drying process (Figs. 1 and 2). A simulation of the drying process for a board 
gives as output the MC as a function of position and time in the board. The MC can 
afterwards be used as input to another simulation that gives stresses, strains and 
deformations in the board as a function of position and time. 

Especially the drying sequence below FSP is important for the drying distortions, because 
shrinkage of wood takes place below FSP. A diffusion model was used here for moisture 
transport simulations, but required diffusion and mass-transfer coefficients as input, D and 
, respectively. In paper 3, CT measurements of MC were made during drying of a 

sample of Norway spruce (Picea abies) sapwood. The diffusion coefficient D and mass-
transfer coefficient  were calculated from the experimental MCs, first with a simpler 1-D 
method and then with a more complex 2-D method. In 1-D, a modified Fick’s first law 
was used for diffusion, and it was stated as 

dx
duDg      (68) 

where g = g(x, t) was the mass flux in the positive x direction per area unit, at position x at
time t, u = u(x, t) was the MC at x and t. Mass conservation and Eq. (68) gave 

,1
0 dx

duD
dx
du     (69)  

which was a modified Fick’s second law. The general boundary conditions to be used 
with Eq. 68 and 69 were specified values of u (essential conditions) or g (natural 
conditions) or g = (u-u ) (convective conditions or mixed conditions) on all or parts of 
the boundaries. 0 = 0(x) was the dry density of the wood sample, and u  was the EMC 
for wood in contact with the surrounding air. In 2-D, corresponding diffusion equations 
were used. 

The diffusion coefficient D describes the amount of water that is transported per MC 
gradient, and the mass-transfer coefficient  describes the amount of water that is 
transported through a surface per difference in EMC between air and wood surface. In the 
capillary phase above FSP, there is no shrinkage, and the MC distribution is thus of no 
importance for the deformations and stresses unless for the influence it has on the MC 
distribution below FSP, which will eventually follow after the capillary phase. The 
diffusion model was used here also above FSP as an approximation with a very high 
moisture diffusion coefficient. 

The results for the diffusion coefficient showed at first that use of MC expressed as mass 
of water divided by mass of dry wood as potential was better than using MC expressed as 
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concentration (mass of water per volume). The reason for this was that the dry density 0
was not constant, but a function of position x, and because of that the concentration may 
vary with x, but still not give rise to a mass flux. The result of the comparison between the 
1-D and 2-D method was that the diffusion coefficients from the 1-D and 2-D evaluations 
were nearly equal, but the 2-D method gave less spread. It was also shown that the 
diffusion coefficients were functions of both MC and depth, i.e., distance to surface when 
the distance to the surface was less than about 8 mm (Fig. 9).  
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Fig. 9. Measured values of the diffusion coefficient D as a function of depth, i.e., distance 
to surface, and MC. Evaluated with the 2-D method on a sample of Norway spruce (Picea 
abies).

The dependence of u on D has long been recognized by others, but the influence of depth 
was new. Some significant change in the way moisture transport takes place near the 
surface as compared to distant from the surface was indicated by the dependence on 
depth. The probable or possible causes of this depth dependence may be surface stresses, 
time dependence or the influence of a dry shell, which has been detected close to the 
surface (Salin 2002; Wiberg 2001).  

The mass-transfer coefficient  was calculated in a number of ways with different 
assumptions about how to calculate the surface MC (Fig. 10). Surface MC cannot be 
measured; instead, MC values a bit from the surface were used to calculate or extrapolate 
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a surface MC. There are different possible ways to do this calculation, and the results of 
these extrapolations differ. 
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Fig. 10. Measured values of mass-transfer coefficient  as a function of surface MC. 
Evaluated with 1-D and 2-D methods on a sample of Norway spruce (Picea abies). Since 
surface MC was not measured directly, different alternatives for the extrapolation of 
measured values to obtain a surface MC are shown. Also shown is the curve that was 
used in the FEM simulations. 

Finally, the evaluated diffusion and mass-transfer coefficients were used in FEM 
simulations of the original wood-drying experiments, and the MC results from FEM and 
CT were compared. The comparison showed satisfactory agreement, which indicated that 
the evaluation methods for D and  worked satisfactory. However, the evaluation was 
sensitive to errors when MC was measured as a function of time. The spread in D and 
increased when MC decreased. 
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4.4 Paper 4: Modelling of adequate pretwist for obtaining straight 
timber

Wooden studs warp mainly due to spiral grain, knots and juvenile and compression wood 
in combination with shrinkage during the drying process. The most unwanted kind of 
warp is often twist, which is due to spiral grain in combination with shrinkage. A problem 
for sawmills in Scandinavia is that lack of straightness of wooden studs has resulted in the 
replacement of wooden studs by steel studs in many applications. In paper 4, FEM 
simulations were performed in which the twist of boards after drying was the output. The 
boards were dried with or without restraints and with or without pretwist during drying. 
The results from FEM and laboratory experiments with the corresponding conditions were 
first made to agree by adjusting material coefficients in the FEM simulations. Secondly, 
FEM simulations using the adjusted material coefficients were performed in order to 
compare twist results after drying with results from an industrial test for boards dried with 
or without restraint. 

The first experiments (Salin et al. 2005; Salin 2005) were performed in the laboratory, 
where boards were dried without restraints, with fixed restraints or with a pretwisted, 
fixed position in the opposite direction to the expected twist direction after drying. The 
results showed that it was possible to counteract the expected twist, totally or to a large 
extent, with an adequate pretwist in the opposite direction during drying. This was 
obviously due to a non-elastic, permanent kind of deformation that appeared during 
drying in a fixed position. A regression analysis of an experiment with 18 centre boards 
(2X log) fixed during drying with various amounts of pretwist gave as result the twist 
after drying 

.812.0510.0 p     (70) 

p was the pretwist used (o/m, positive if right-handed) and  was the spiral grain angle 
measured on the board sap side. Fig. 11 indicates the degree of explanation (R2 = 0.89) of 
Eq. (70) for the 18 boards. 

Spiral grain can be measured on the surface of logs or boards automatically during 
production (Nyström & Grundberg 2002). It is in that way possible to sort out specific 
logs or boards with respect to the spiral-grain angle. An industrial test (Nyström 2002) 
showed the relationship between twist after drying, spiral-grain angle on the log surface 
and layer number in the drying stack. The layer number reflects the fact that the higher the 
layer number, the higher the load on the board during drying due to the weight of the 
boards above the board in question. The load on the board affects the degree of restraint 
on the board such that layer one, on top of the drying stack, has zero load and is thus free 
and without restraint. A board with a high layer number, for example, 20 or higher, has a 
high load and is approximately fixed during drying. The results showed that there was a 
relationship between the variables: twist after drying, spiral grain angle on the log surface 
and layer number in the drying stack. 
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Fig. 11. Measured twist after drying as a function of the predicted twist according 
to p812.0510.0 [Eq. (70)] for 18 boards of Norway spruce (Picea abies) 
dried with various amounts of pretwist. Line is equal measured and predicted twist. 

First, FEM simulations corresponding to the laboratory experiments for 47 x 100 mm 
boards were performed. The simulations were divided into two steps: first a drying step 
and second a deformation step using the MC values from the first step as input. A 
diffusion model was used in the first step, in which the diffusion and mass-transfer 
coefficients were taken from earlier experiments (paper 3). The second deformation step 
used an elastic-plastic material model with material coefficients that were dependent on 
MC and temperature to simulate the material behaviour of the wood (see section 3.9). 
Permanent deformations were possible due to plastic, permanent strains due to high 
stresses. The elastic material coefficients were all taken from literature or were estimated 
based on data in the literature. However, the yield stresses were undetermined at start, but 
then tried out or determined in a way such that the results from the FEM simulations and 
the laboratory experiments agreed as much as possible. Fig. 12 shows a comparison 
between the final FEM results and Eq. (70), which represents the results from the 
laboratory experiments. 

As the second step, FEM simulations corresponding to the industrial test for 38 x 125 mm 
and 50 x 150 mm boards were performed for fixed restraints and for freely drying boards 
using the yield stresses that were set in the simulations of the laboratory experiments. The 
validity of the simulation model could be tested in this way. The results from the FEM 
simulations and the industrial test results are compared in Fig. 13. There is a discrepancy 
in level such that the FEM results are higher, but the slopes of the curves agree. 
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Fig. 12. Twist after drying as a function of spiral-grain angle and amount of pretwist for 
boards of Norway spruce (Picea abies). Experimentally determined and FEM results are 
shown.

The conclusions were that the simulation model gave a realistic output of permanent 
deformations, stresses and strains after drying for industrial conditions with no pretwist. 
Probably this was valid also for the pretwist condition, but that ability was not tested. The 
discrepancies that occurred between FEM simulation results and industrial test results 
were probably due to natural spread in the wood material or biased measurements or other 
uncertainties. Differences between the laboratory experiments and the industrial tests with 
regard to drying schemes and end restraints could also have influenced the comparison 
between FEM simulation results and industrial test results. Yield stresses for wood were 
obtained as a byproduct, but the appropriateness of the yield stresses was uncertain, since 
no source of corresponding experimentally determined yield stresses was known. 
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boards. Industrial test results and FEM results are shown.
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5 Discussion 
Practical use of research results for industrial purposes is often the goal of research today, 
and the procedure for accomplishing that here is described by Fig. 14 in very general 
terms. The procedure that takes place is a sequence that starts with an observation of the 
behaviour of wood in some respect, here twisted boards after drying. Then measurements 
in the laboratory confirm the behaviour, and as the third step the theoretical simulation 
takes place. From theory and simulations we get knowledge of how to control the 
behaviour by changing process parameters (here, pretwist during drying), and finally, an 
industrial implementation may be started. The industrial implementation often consists of 
measuring some parameters, in this case spiral grain angle, for example, and by 
controlling the process from that information. Papers 1 and 2 belong to the laboratory 
measurement phase, paper 3 to the simulation and theory phase and paper 4 to the 
industrial verification phase of this procedure. 

Fig. 14. Practical use of simulation results 

The results in papers 2, 3 and 4 have shown that it is possible to realistically simulate 
wood-drying behaviour by using a FEM simulation technique. The limitations of the 
simulation model were believed to be the simplified log model and the uncertain material 
coefficients. Use of measured local fibre directions with the method presented in paper 1 
would probably produce a more realistic simulation model. However, this method has not 
been used yet. For the pole-vaulting simulations, the simulation results have shown that 
realistic behaviour of a pole and a vaulter in a pole vault can also simulated in a realistic 
way. In this case, the limitations lie mainly in the description of the human behaviour and 
the interaction between vaulter and pole. A FEM simulation is in general a powerful tool 
and has no limitations when it comes to modelling physical events, provided that a 
formulation of the problem in mathematical terms is possible. 

Material modelling is a complicated issue when it comes to modelling wood behaviour. A 
homogenous material is a material that is solid with no holes in it but wood is not 
homogeneous on a microscopic scale. The reason for this is that there are small holes 
(lumina) within the material that can be filled with air or water or a mixture of air and 
water. However, the holes are so small that the wood material can often be approximated 
as homogeneous for a simulation of a piece that contains a large number of cells. The 
condition for this is that the scale of each lumen has to be much smaller than the scale of 
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the analyzed structure and the scale of the variation of the load and the results. However, 
there are cases, e.g., simulations of cutting of wood with a sharp edge, where the loaded 
part of the body is so small that the cell structure probably influences the results. In such 
cases, the wood material cannot be regarded as a homogeneous material, and the wood 
material must be modelled as consisting of only the cell walls. As a consequence, each 
cell with its cell walls and lumen must be modelled. 

Besides from homogeneity there is also a question of whether there is uniformity. 
Uniformity for a material means that the material has constant properties in the whole of 
the volume in question. If we assume homogeneity for the wood material, there are many 
possibilities when it comes to the uniformity, but two extremes can be mentioned. The 
first, simplest and perhaps least accurate approach, is to model the material as uniform, 
which means that we use the mean material properties for the whole of the wood material 
in question. The mean properties are taken from measurements on several, relatively 
large, real pieces of wood. This will mean that the result of the simulation is valid for a 
hypothetical wood piece that happens to consist of uniform material with these mean 
properties. Hopefully, the simulation result will also agree with the mean value of the 
experimental result for a sufficiently large group of individual wood pieces. The other 
extreme possibility, which is much trickier, but more accurate, is to model the material as 
nonuniform. This means that we use the local properties for an individual wood part, and 
we model the material with varying material properties; i.e., the material properties are 
described as varying in the volume of the material. In this way the results will be valid for 
this individual only, and the result is in general not valid as a mean value for a group of 
wood pieces (unless the individual piece happens to be a “mean” wood piece). As a 
possibility in between those extremes there is the possibility to model some material 
properties as uniform and some as varying, e.g., by modelling the stiffness properties as 
uniform and by modelling the spiral-grain angle as varying with distance from pith.  

With regard to modelling varying material properties, there is also a question of what 
scale of variations is appropriate. Is it appropriate to disregard the variation between 
growth rings and only model a larger scale variation with, for example, distance from 
pith? Or is it necessary to model the variation between growth rings or to go to an even 
smaller scale and model the variation of material properties within each wood cell or 
fibre? The most extreme method is perhaps to model each cell with its cell walls 
containing several different layers and to take into account the hollow space inside the 
cell (lumen). The drawback of going into such extreme detail is that the material 
properties are hard to determine or measure in small detail and that the FEM model will 
take a long time to solve, even for a very small model. The answer to the question of what 
is the best is, of course, that it depends on what you are aiming at, since the output will 
vary with the same scale as the input data varies. The goal is a model that will yield 
simulation results that agree with experimental results measured with the resolution that 
you decide is sufficient.  

The wood-modelling problem may be viewed as taking place in a two-dimensional (2-D) 
model space (Fig. 15). At point A we model the geometry of the wood material as 
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homogeneous, and we use a local description of material properties; for example, 
variations of material coefficients between earlywood and latewood in growth rings can 
be taken into account. At point B we also model the geometry of the wood material as 
homogeneous, but we use global mean material properties throughout the wood piece. 
Thus point B is the simpler of the two models A and B. At point C we make a detailed 
geometrical model of the individual cells in the wood piece and also use a local 
description of material properties. Thus point C is the most detailed of the models. At 
point D we make a detailed geometrical model of the individual cells in the wood piece, 
but we use global mean material properties throughout the wood piece. The closer we get 
to the origin in Fig. 15, the more accurate is the solution, but the more costly is the 
simulation. The exact solution for the simulation lies in the origin in Fig. 15, but to reach 
this point is impossible, since the cost increases with decreasing distance from the origin. 
The closer we get to the origin, the more refined and detailed experimental results are 
needed in order to calibrate the model. 

In the simulations in this thesis, all wood material models have a large geometrical scale; 
i.e., we consider the wood material to be continuous, and we do not model individual 
fibres or cells. For the computer simulation models in this thesis (papers 3 and 4), 
variation of diffusion coefficient with distance from surface and variation of spiral-grain 
angle with radius are considered, but other properties are considered to be uniform; i.e., 
the models can be placed somewhere between A and B in Fig. 15.  

There are limitations regarding material models due to the mathematical difficulty in 
formulating the behaviour of the material coefficients in the state space involved in a 
simple and efficient way. In simulations of the drying process in wood, the state space of 
the material coefficients is the space that is spanned by T and u if the material coefficients 
are assumed to be functions of T and u. Thus the state space is in this case 2-D. The 
experimental numerical determination of the material coefficients is tedious if the 
dimension of the state space is two. Extensive testing of the material behaviour or use of 
other people’s experimental data is needed. Often, assumptions or even guesses about 
material behaviour for the states that are not exactly known or tested need to be made. 
Thus, compared to other materials such as metals, which have a state space that is 1-D 
(only T is involved), wood is more difficult to work with. There is also the question of 
whether there may exist any additional state parameters for wood that would explain the 
material behaviour, such as the mechanosorptive behaviour, in a better way. This would 
mean that if the number of state parameters is increased from two to three or more that the 
amount of testing needed to fully try out the whole state space of the wood material would 
increase tremendously. On the other hand, a more complex material model could probably 
better explain unexpected behaviour of wood compared to simpler material models with 
fewer state parameters.  
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Fig. 15. Two-dimensional description of the material-modelling possibilities for wood. 
The curved lines represent equivalent accuracy and cost. 

The pole-vaulting simulations did not suffer from the same limitations in material 
modelling as the simulations of wood-drying distortions. The pole material was modelled 
as elastic, and there was a zero-dimensional state space, since no variation of temperature 
took place. This means that the determination of the material coefficients was much easier 
than in the wood-drying simulations. However, the model used for the pole vault 
simulations suffered, instead, from limitations in the model of the interaction between the 
human vaulter and the pole. The algorithm that specifies the behaviour of the vaulter in 
the licentiate thesis was rather crude compared to the real behaviour, which we must 
assume to be more complex, advanced and intelligent. 

The work described in this thesis has shown that FEM is a powerful and useful tool for 
simulations of wood behaviour due to inner and outer loads. Simulations of this kind are 
of outmost importance for understanding the mechanisms that give rise to different kinds 
of wood behaviour. Also the simulations are important for developing new types of 
improved process control methods in the wood manufacturing industry and for improving 
design methods for wood structures. 
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Future work in the subject of wood-drying distortion simulations is needed in order to 
improve the usefulness of the model. The elastic-plastic material model used in paper 4 
worked well and showed that it could be an alternative for modelling drying behaviour of 
wood alongside other possible models, such as elastic-mechanosorptive models. The log 
model works well for twist deformations, but if other types of warp are to be simulated, 
then the introduction of a knot model is believed to be necessary. This knot model would 
better model the fibre-direction changes around knots that influence crook, for example. 
Also an increased use of locally varying material coefficients to model juvenile and 
compression wood, for example, and more use of locally varying fibre directions would 
be necessary. In addition, measurements of elastic and elastic-plastic material coefficients 
as function of MC and temperature would improve the validity of the simulation model. 
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Abstract This paper describes a new method, called the
CT-direction method, in which the fiber directions in wood
in three-dimensional space are calculated from the pixel
information on a series of two-dimensional computed to-
mography images. Local fiber directions are calculated from
the principal directions of inertia of measurement spheres
distributed throughout the body of the wood object. The
calculated fiber directions are probably due to density
streaks in the material, such as fiber bundles, which are
directed in the fiber direction, and not the density of indi-
vidual fibers, which are too small to be detected. The fiber
directions vary locally, and density streaks from knots,
growth rings, and compression wood influence the results,
which adds spread to the results. The fiber directions are
presented as spiral grain angles and conical angles and are
compared with spiral grain angles measured with the trac-
heid-effect method. The comparisons show that the CT-
direction method is a nondestructive way to measure fiber
directions locally and in the interior of the body of a piece of
wood.

Key words Wood · Fiber direction · Spiral grain · Com-
puted tomography · FEM

Introduction

Computed tomographic (CT) images of the interior of a
piece of wood are often easy to understand, as the example
in Fig. 1 shows. The pith position, growth rings, knots, areas
with compression wood, and juvenile wood can be visually
observed as characteristic patterns, streaks, points, lines, or
areas in the image. A CT image is a matrix of discrete
density values, called pixel values, viewed as a two-
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dimensional (2-D) contour plot. The CT scanning process
produces a three-dimensional (3-D) description of the den-
sity as a series of images with the wood object being trans-
lated a bit between each image. The geometric resolution of
the image is the pixel size (i.e., the size of the volume for
which each discrete density value stands). The pixel values
for the series of 2-D images are stored on data files and can
be handled with computer programs.

The pith position and the tangential and radial directions
of the growth rings can be determined visually from a 2-D
CT image of a section perpendicular to the pith direction.
However, the fiber directions, which are approximately
along the pith direction, are not directly visible. The CT-
direction method described in this paper calculates local
fiber directions in the body of a wood object from the infor-
mation in a series of 2-D CT images.

One use for the local fiber directions is for finite element
(FE) calculations on wood, for which an orthotropic mate-
rial model is used. Knowledge of the orthotropic stiffnesses
(i.e., the elastic moduli) in the material is required as well as
the orthotropic directions themselves (i.e., radial, tangen-
tial, and fiber directions). The CT-direction method sug-
gests a new way to achieve local, orthotropic directions for
wood to be used for FE calculations. If such local data are
used in FE calculations, realistic simulations of drying de-
formations of real planks are possible; and local crooks,
twists, and bows can be simulated.

No other methods to detect 3-D fiber directions auto-
matically in a computer program from CT images are
known to the author, although Sepulveda1 manually mea-
sured the spiral grain angle from CT images of a log by
creating images on concentric surfaces and recognizing pat-
terns in the images. Investigations of other phenomena in
the 3-D interior of wood by CT have also been reported.
Bhandarkar et al.2 used CT to detect internal log defects
and to determine how they are directed. Illman and Dowd3

used 3-D microtomography to obtain spatial information
and characterize the structural integrity of wood. Values for
the spiral grain angle and older, traditional methods for
measuring the spiral grain angle have been reported by
Harris.4
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Theory

Principal directions

The radial, tangential, and fiber directions are calculated
from the principal moments of inertia and the principal
directions of fictitious, small (4–15mm diameter) “measure-
ment bodies” (spheres) that are distributed throughout the
inside the body of the piece of wood. The theory is as
follows: The mass center position Xcg, Ycg, Zcg of a specific
body is

X
X dV
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where r is the density, V is the volume of the body, and X-
Y-Z is an arbitrarily placed Cartesian coordinate system.
The integrations are performed numerically with the den-
sity distribution known at discrete points and interpolated
values in between. The mass distribution of the body is
described by the moment of inertia tensor
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and x-y-z is a Cartesian coordinate system that has its origin
in the mass center of the body. The principal directions
(eigenvectors) and principal values (eigenvalues) for I are
calculated as the solutions of the eigenvalue problem

I E P �  � λ( ) 0 (4)

where λ  is a diagonal matrix containing the three principal
values on the diagonal, E is the identity matrix, and P is a
matrix with the three principal directions as column vectors.
The principal values are the principal moments of inertia,
and the principal directions are the principal directions of
inertia.

The three principal moments of inertia are, in general,
unequal for a spherical body with an arbitrarily varying
mass distribution; as a result, the three principal directions
are unique and orthogonal. There are interesting special
cases, however, such as the double and triple eigenvalue
problem. For a spherical body the geometry in itself does
not prefer any direction; consequently, a spherical body
with constant density has arbitrarily directed principal
directions, and all three principal moments of inertia are
equal. In this case we have a triple eigenvalue problem, and
the column vectors in P are three arbitrary but orthogonal
directions.

In the case of two principal moments of inertia being
equal we have a double eigenvalue problem, and the princi-
pal directions belonging to the double eigenvalues are arbi-
trarily directed in a specific plane. Thus, P contains two
arbitrary but orthogonal vectors in the specific plane and
one unique column vector normal to the specific plane. Two
special cases for wood exemplify the double eigenvalue
problems: For a spherical body containing a plane slice or
layer of material with a density different from the rest of the
body, such as a growth ring layer, the unique principal
direction lies in the direction normal to the layer, and the
other two directions lie arbitrarily in the plane of the layer.
For a spherical body containing a small straight cylinder of
material with a density different from the rest of the body,
such as a fiber bundle, one principal direction lies in the
direction of the small cylinder, and the other two directions
lie arbitrarily directed in the plane perpendicular to the first
principal direction.

The question of whether a principal direction is unique
is, in practice, treated in the following way. The ratios
between the eigenvalue in question and the two other
eigenvalues are formed; if they differ from 1 by more than ε,
the eigenvalue in question is unique. The ε value is a
nondimensional limit defined by the user.

The primary cause of unique principal directions in
wood is the growth rings (i.e., density variations in the radial
direction). A growth ring is approximately a conical layer in
the material that consists of an inner sublayer of earlywood
with low density and an outer sublayer of latewood with
high density. Growth rings from consecutive years appear
in a piece of wood as a series of concentric conical layers.
An eigenvalue calculation for a sphere containing such
layered material results in three eigenvectors approxi-
mately in the radial, tangential, and axial directions of the
cone and three corresponding eigenvalues. The tangential
and axial eigenvalues may be equal or nearly equal, which
indicates that the unique direction is the radial direction
and that all vectors lying in the plane spanned by the
tangential and axial eigenvectors are eigenvectors. How-
ever, if streaks of material with a density different from that
of the surrounding material exist and point in the fiber

Fig. 1. Two dimensional computed tomography (2-D CT) image of a
section through a piece of wood. The densities are in the range of
235 kg/m3 (white areas) to 557 kg/m3 (black areas). Plank E, section 22
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direction, the axial eigenvector is unique and points in the
fiber direction.

There is a need for a statistical averaging procedure
when calculating fiber directions because not only fiber
bundles influence the density distribution; knots, compres-
sion wood, ray cells, and noncircular or markedly curved
growth rings affect the calculated directions. Results for
individual spheres vary, and it is necessary to take an aver-
age over a number of spheres to obtain meaningful results.
The pixel size also influences the results and sets a limit for
how small the material streaks which are possible to detect
may be. The sphere size sets a limit for how large the mate-
rial streaks (also possible to detect) may be.

For FE purposes it is, in addition to knowing the
orthotropic stiffnesses, necessary to know the local material
directions; the pith position and spiral grain angle are not
interesting in themselves. However, it is interesting to calcu-
late traditional measures such as the spiral grain angle to
compare results from the CT-direction method with the
results of other methods.

Calculation of fiber angles

The series of 2-D CT images are put in an X-Y-Z Cartesian
coordinate system. The X-Y coordinate plane is parallel
to the image planes, and Z is the axial coordinate, directed
perpendicular to the image planes, approximately along
the pith direction. At first the pith positions for all sections
are either determined by visual inspection of the images or
are calculated by an other method. Here the pith positions
are calculated automatically by a method suggested by
Ekevad (to be published). The succession of pith positions
is a curve in 3-D space, called the pith curve. Approximate
radial, tangential, and axial directions are calculated for
each sphere from the pith position and the position of the
sphere center.

Eigenvectors for all spheres are calculated and sorted in
the order radial, tangential, and axial eigenvectors by com-
paring the eigenvectors with the approximate radial, tan-
gential, and axial directions. The axial eigenvector is
assumed to point in the fiber direction and is called y .

The spiral grain angle � and the conical angle � are
calculated by projecting y on two planes. The first is the
tangential plane to the growth ring cone through the point
in question, and the second is the pith plane, which is
spanned by the pith direction vector m and the radius
vector r , (Fig. 2). The calculations for a sphere with its
center point position vector x � (Xcg, Ycg, Zcg)

T are as
follows, where x0 is the pith position vector for the section
which is closest to the sphere’s center point, and m is the
pith direction vector (directed from the pith position in the
current section to the pith position in the next section).
The radial vector

r x x m x x m �  �  �  � 0 0◊ ( )[ ] (5)

is the shortest possible vector from the pith curve to the
sphere center. The pith plane spanned by r  and m has the
normal vector

n
r m
r m

 � 
 � 

 � (6)

and

p n n �  �  � y( ) (7)

is the projection of the eigenvector in the fiber direction y
on the pith plane. The conical angle � where

�  � arccos p m◊( ) (8)

is the angle between m and p . The sign of � is defined to
be positive if

r p◊  � 0 (9)

which means a decreasing growth ring radius with increas-
ing axial coordinate, and negative otherwise. Normally, � is
positive if the positive axial coordinate direction is from the
root to the top of the tree. The tangent plane of the cone in
the actual point x is spanned by p and y . The spiral grain
angle �, where

�  � arccos y ◊( )p (10)

is the angle between y and p . The sign of � is positive if

y ◊ n  � 0 (11)

Fig. 2. Geometry in three-dimensional space. The spiral grain angle
� and the conical angle � for a sphere with center point position
vector x . The pith position vector is x0 , and the pith direction vector
is m . The radius vector is r , and n is the normal vector of the pith
plane. The eigenvector in the fiber direction is y , and its projection on
the pith plane is p
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which means that a positive twist is right-handed, as
in a right-hand threaded screw. Normally, � is negative
in the wood objects treated here (i.e., left-handed spiral
grain).

Materials, methods, results

The CT images of two planks of Norway spruce (Picea
abies) from northern Sweden, designated planks D and E
with cross sections measuring 85 � 40mm and lengths
350mm were analyzed according to the above procedure.
The planks were free from knots in the areas treated
but achieved a twist deformation of about 4 degrees/m dur-
ing the drying process, which indicates that the spiral
grain angles were rather large. The distances between the
CT images were 2mm, and the centers of the spheres
were evenly distributed over each image area with 1mm
distance between adjacent sphere centers for both planks.
The fiber directions � and � were calculated and are shown
in Figs. 3–6 for one axial position in plank D and two axial
positions in plank E. Spheres with centers in three to five
images were used to calculate the fiber directions for each
axial position. Unique eigenvectors in the fiber direction
were ensured by setting ε at 0.005 for plank D and at 0.004
for plank E, values that have been used to give low spread
in the final results. Sphere diameters were 7mm for plank D
and 4mm for plank E; the pixel size was 0.4466mm; and the
distances between growth rings were in the range of 1.5–
5.0mm.

The results for � are presented in two alternative ways for
plank D in Fig. 3 and for the two axial positions for plank E in
Figs. 5 and 6. The first way to present the results is as all but a
few of the individual �-values for all the spheres which fulfil
the condition for uniqueness of the eigenvector (a few �-
values are outside the limits of the diagrams and are not
shown). The second way to present the results is as statistical
measures for groups of �-values. Here mean-, mid-, lower
quartile- and upper quartile-values for � are shown for all
spheres which lie in groups with radii 0–10, 10–20mm and so
on. The � value is shown in Fig. 4 for plank D and only as
individual values for each sphere. The angles � and � are
presented as functions of the radius to the pith (i.e., the
distance from the sphere center of gravity to the pith).

Measured values of the angle � with the method devel-
oped by Nyström5 are shown in Figs. 3, 5, and 6 for compari-
son. These values are measured at a single point on the
plank upper side for each radius. The chosen points for
measurement are “good” points; that is, no knots or other
phenomena are visible near the points.

Discussion

Figures 3, 5, and 6 show the variation in spiral grain angles
between the individual spheres in the three test cases. There
is significant spread in the results for individual spheres,

and a possible explanation is as follows: The CT-direction
method detects directions in the density distribution in the
piece of wood, directions that are due to systematic density
variations. The pixel size used here is not small enough to
capture density variations between individual fibers; it
probably captures density variations due to bundles of
fibers and other density streaks that follow the fiber direc-
tion. However, the density variations, which reveal the fiber
directions, are not particularly significant compared to

Fig. 3. Calculated spiral grain angle � for the spheres in sections 3–7 in
plank D as a function of the radius from the pith. The factor ε is 0.005,
which gives 792 unique angles from a total of 9990 spheres. Spiral grain
angle � was measured by the tracheid-effect method by Nyström.5 The
mean, mid, lower quartile, and upper quartile values for the data were
collected from five groups with radii of 0–10, 10–20, 20–30, 30–40, and
40–50 mm
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other causes of density variations, such as knots, growth
rings, and compression wood. Therefore, the calculations of
spiral grain angles and conical angles have a significant
spread, and statistical treatment of the results from many
individual spheres is needed.

The mean and mid values in Figs. 3, 5, and 6 agree
well with the results from the tracheid-effect method of
Nyström.5 The spiral grain angles are rather large (about 5
degrees left-handed), as would be expected from the large
twists of the planks that occur during the drying process.
The conical angle � is about 0 degrees/m (Fig. 4), a
value that seems reasonable for the short (�10cm) axial
lengths studied, although no other data are available for
comparison.

It is found, in general, that the spread decreases if
spheres from more than one image are combined because
the increased number of spheres gives a more reliable statis-
tical evaluation. However, the spreads are increased if more
than about three to five images are grouped together which
indicate that the fiber directions (or the possibility of detect-
ing fiber directions), vary in the axial direction of the
planks. Also, certain images give more spread than others:
compare Figs. 3 and 6, which indicate that certain sections
of the planks contain fewer or smaller fiber bundles, which
are more difficult to detect than those in other sections. The
spread is generally larger for small radii than for large radii
(Figs. 3, 5). Part of that spread is due to the fact that small
errors in the pith position or in the fiber angles influence the
calculation of spiral grain angles for small radii more than
for large radii.

The figures describe the angles � and � as functions of
the radial coordinates, as they are usually described. Gener-
ally, however, there are also variations in the tangential
direction, in the axial direction, and around knots, which
cause part of the spreads in the figures.

Fig. 4. Conical angle � for the same spheres as in Fig. 3 as a function of
the radius from the pith

The sphere size and the pixel size determine the size of
the density streaks, which are possible to detect. Decreased
sizes make it possible to detect smaller density streaks. The
sphere sizes used here, 4 and 7mm, were used to give as
small a spread as possible, and they worked about equally
well for planks D and E. The pixel size used was as small as
possible with the available CT scanner.

Fig. 5. Calculated spiral grain angle � for the spheres in sections 10–12
in plank E as a function of the radius from the pith. The factor ε is
0.004, which gives 858 unique angles from a total of 8160 spheres. Spiral
grain angle � was measured by the tracheid-effect method by Nyström.5

The mean, mid, lower quartile, and upper quartile values for the data
were collected from six groups with radii of 10–20, 20–30, 30–40, 40–50,
50–60, and 60–70 mm
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Conclusions

The results presented in this paper show that the axial
eigenvector, if it is unique, points in the fiber direction in an
average sense. Thus, the CT-direction method works and
can be used to detect local fiber directions for various pur-
poses (e.g., for FE calculations). It is also possible to use the
method to obtain 3-D density data, which are measured
with methods other than CT. Further work, such as investi-
gations of the influence of the pixel size of the tomograph,
could improve the CT-direction method.
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Abstract Distortions due to moisture changes during dry-
ing or in service are a major problem for construction tim-
ber. Twist, caused mainly by the cylindrical geometry, the
orthotropic nature of the wood material, and the tendency
of the wood fibers to grow in a spiral around the stem, is
often regarded as the most detrimental distortion of sawn
timber. There is a need for a basic mechanical understand-
ing of how the twist distortion arises and also a need for a
simple formula to predict the amount of twist distortion. In
this article such a formula is proposed, and theory and
experimental data that indicate the validity of the formula
are shown. The first term in the formula is a modification of
a traditional expression which is proportional to the mean
value of the spiral grain angle in the cross section in ques-
tion. The second term in the formula is new and is propor-
tional to the gradient of the spiral grain angle, and this term
normally counteracts the first term so that a stud with a
left-handed spiral grain might achieve a right-handed twist.
Linear elastic finite element method (FEM) results and
comparisons with experimental data show that the formula
works well and that linear FEM calculations exaggerate the
twist, which is probably partly due to nonlinear effects. The
formula could be used to predict the twist of sawn timber
from measured spiral grain angles on the log surface.

Key words Wood · Spiral grain · Grain angle · Twist · FEM

Introduction

The goal of the sawmill industry is to produce straight sawn
timber to be used as building material. Thus, distortions due
to moisture changes during drying and during service are a

major problem for construction timber. Distortion is di-
vided into crook, bow, cup, and twist, although twist is often
regarded as the most detrimental distortion. The causes of
distortions are mainly the cylindrical geometry caused by
the growth rings and the orthotropic nature of the wood
material, i.e., varying shrinkage and elasticity in the radial,
tangential, and longitudinal directions. Twist is mainly
caused by the tendency of the wood fibers to grow in a spiral
around the stem, which causes the sawn and dried timber to
twist. Knots and other kinds of local fiber variations also
influence distortion to a great degree.

Spiral grain angle can be measured in studs and in logs
with older manual methods1 or automatically2 or by com-
puterized means.3 Measurements of spiral grain angle and
its correlation to twist angle and other parameters, such as
distance from pith, log diameter, compression wood, and
growth conditions, have been made by many researchers.
Sawn timber in general is a material with varying properties
due to circumstances such as the different growth condi-
tions of individual trees, and statistical methods must be
used in order to handle the large spread in the measured
data. Nyström2 has measured twist angle and spiral grain
angle on log surfaces and found a strong correlation.
Forsberg and Warensjö4 have found that the spiral grain
angle on a log surface and the slope of the spiral grain angle
curve are strongly correlated to twist angle. Säll5 and
Johansson et al.6 have measured twist and spiral grain angle
in different ways and found correlation. Older experimental
results are described by, among others, Forsberg and
Warensjö.4 Ormarsson et al.7 have calculated twist distor-
tions for sawn timber using finite element methods (FEM).

Even though FE calculations can give detailed informa-
tion about drying distortions such as the twist of sawn
timber, there is a need for a basic mechanical understanding
of the cause of twist distortion, and, preferably, a simple
formula to make rapid calculations and predict twist distor-
tions. Until now, the formula
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derived in the late 1950s by Stevens and Johnston8 has often
been used to calculate twist distortions. The formula is valid
for the twist angle � of a thin-walled cylinder of wood with
the center axis along the pith axis, length l, radius r, thick-
ness t, where t �� r, spiral grain angle θ, and the relative
shrinkage s across the grain. In spite of the formula’s valid-
ity only for thin cylinders of wood, it is also often used for
the prediction of all sorts of twist in sawn timber. In these
cases the distance from the pith to some point in the cross
section in question, e.g., the middle point, is used as the
“mean” radius r in the formula.

In this article, the shortcomings of using Eq. 1 for calcu-
lating theoretical twist angles for sawn timber are discussed,
and a new formula is proposed where the spiral grain angle
and the gradient of the spiral grain angle with respect to the
radius and the distance to pith are included. A physical
explanation and motivation for the terms in the formula are
given, as are FE calculations and measurements which jus-
tify the modified formula.

Theory

Twist of a thin-walled cylinder

A thin-walled cylinder (cf. a single growth ring) is consid-
ered (see Fig. 1). The length is l, the radius is r, the spiral
grain angle is θ (�0 for right-handed spiral grain), and the
shrinkage coefficients are αt in the cross-fiber direction and
αl in the fiber direction. The wall thickness is negligible
compared to the radius, and the shrinkage coefficients are
defined as relative length change per change in moisture
ratio Δw. Δw (�0 for drying) is the ratio of the change of
mass of the moisture to the mass of the dry wood, but only
the moisture mass change below the fiber saturation point is
considered. A fibre coordinate system r-t-l is defined for a
point on the cylinder surface in the radial, tangential, and

fiber directions and a cylinder coordinate system x-y-z is
defined along the radial, tangential, and axial directions.
Presuming we have no stresses, the normal strains due to
Δw are εt � αtΔw and εl � αlΔw. After a rotation θ in the
t-l plane, by using Mohr’s strain circle, we get

ε α ε α γ α α θy t z l yz t lw w w �   �   � �  � D D D, , 2 ( ) , (2)

where it is assumed that θ is small. The strains εy and εz

represent changes in circumference and length of the cylin-
der, respectively, and the shear strain γyz leads to a twist of
the cylinder. From the elementary theory of torsion of cir-
cular shafts (e.g., see Timoshenko and Goodier9) we have
the kinematic relation

γyzl r �  j (3)

where � is the twist angle of the cylinder (�0 for right-
handed twist). Eliminating γyz with Eqs. 2 and 3 we get

j D � �  � 
l
r

w t l2 α α θ( ) (4)

which is essentially the same formula as that of Stevens and
Johnston8 if �Δwαt is replaced with s and αl is set to zero.
Because αt � αl, drying (Δw � 0) will give � the same sign
as θ, i.e., a right-handed spiral grain will result in a right-
handed twist and vice versa. The twist distortion appears
without stresses.

Twist of a circular, thick, solid cylinder

Here we disregard radial shrinkage and approximate a solid
cylinder with outer radius ry as a set of concentric thin-
walled cylinders with varying radii coupled in parallel via
end torques. Each thin-walled cylinder has the same shear
modulus and is able to twist due to the end torques. The
spiral grain angle is considered a function of the radius, θ �
θ(r). We use the condition that the angle of twist is equal
and that the resulting torque is zero from all the thin-walled
cylinders and we get the twist angle

j D � �  � 
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r
w r dr
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0

8 α α θ( )Ú . (5)

If θ is constant and not a function of the radius, then using
Eq. 5 we find that Eq. 4 can be used for a solid cylinder if r
� rm � 3ry /4 is used as a “mean” radius in Eq. 4. If θ(r) is a
linear function
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θ
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where
d
dr
θÊ

ËÁ
ˆ
¯̃ is the (constant) gradient of the spiral grain

angle function, then using Eq. 6 in Eq. 5 we conclude that
Eq. 4 gives the same result as Eq. 5 if “mean” values r � rm

� 3ry/4 and θ � θm � θ(3ry/4) is used in Eq. 4. In this case the
resulting twist distortion creates self-equilibrating shear

Fig. 1. Thin-walled cylinder with radius r, length l, and spiral grain
angle θ
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stresses in the cylinder, but the twist angle is not dependent
on the size of the shear modulus.

Twist of thin-walled and solid cylinders with axial cuts

In both of the two cases treated above, the cross sections of
the twisted bodies will not warp; i.e., they will remain plane
due to the cylindrical symmetry. However, when timber is
sawn, the growth rings are cut and the cross sections of the
sawn timber will consist of only parts of growth rings. Thus,
there is no cylindrical symmetry, and the cross sections may
warp; i.e., the cross sections do not remain plane. As an
example we may think of a thin-walled cylinder with an
axial cut. If the cylinder surface exhibits a shear strain γyz,
then the cut axial adjacent edges may move axially relative
to each other (i.e., the cross section warps) and form what is
called a screw dislocation instead of receiving a twist distor-
tion (see Fig. 2). In practice, a thin-walled cylinder with an
axial cut will receive a combination of twist and warp, and
thus the twist angle is reduced compared with the twist
angle of an uncut cylinder. Likewise, a solid cylinder with an
axial cut from the outside to the pith will also have cross
sections which will warp, and the twist angle will be less
than the twist angle for an uncut solid cylinder. In practice
we may multiply Eq. 4 with a constant factor C, 0 � C � 1
in order for it to be valid also for a thin-walled or solid
cylinder with an axial cut

j D � �  � C
l

r
w t l

m
m2 α α θ( ) . (7)

Twist of a thin strip

The twist of a thin strip is interesting to study as a simple
extreme case, because sawn timber with cross sections lying
near the outside of thick logs will have rather flat growth
rings. Here the thin strip is interpreted as a part of the

surface of a thin-walled cylinder with a very large radius.
The twist of a thin strip loaded with torques at the ends is
treated in elementary solid mechanics textbooks (e.g., see
Timoshenko and Goodier9), but instead, here we treat a
variant of the elementary problem where the twist angle �
of the strip as a function of the shear strain γyz due to
shrinkage is sought. We study the strip in a Cartesian coor-
dinate system x-y-z, where x is pointing in the radial direc-
tion, y in the tangential direction, and z in the axial direction
of the strip (see Fig. 3). The strip is thin in the x-direction,
and thus the shear strains γxy � γxz � 0, and the only nonva-
nishing shear strain is γyz. Therefore, γyz from Eq. 2 and a
linear θ variation from Eq. 6 give
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We now divide the influence on the twist angle � from γyz

into two separate parts, namely, first the influence of the

first term γ0 and the influence of the second term  
d

dx
xyzγÊ

ËÁ
ˆ
¯̃

0
.

We then realise at first that the constant part γ0 will not
affect the twist, because the strip is able to get a simple
shear deformation in the y-z plane due to γ0. However,
when it comes to the influence of the second term, which is
proportional to x, such a simple shear deformation is not
possible. Instead, the result is a twist angle � which we show
as follows. Twist deformation of the thin strip gives
displacements

u
l

yz u
l

xz u
l

x yx y z � �   �   � 
j j j

, , ,ψ( ) (9)

according to Saint-Venant’s theory of torsion.9 ux, uy, and uz

are displacements in the x, y, and z directions, respectively;
ψ is the warping function, and l is the length of the strip. The
displacement/strain relations give zero normal strains, but
the shear strains become

γ γ
ψ

γ
ψ

xy yz xzl
d
dy

x
l

d
dx

y �   �  �   �  � 0, ,
j jÊ

ËÁ
ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ . (10)

Since γxz � 0 is a condition due to the thinness of the thin
strip, Eq. 10 gives the solution ψ � xy. This solution also
fulfils Laplace’s equation Δψ � 0, which is a necessary
requirement in torsion theory. Now Eq. 10 with ψ � xy
gives

Fig. 2. Warp of a thin-walled cylinder with an axial cut exposed to a
shear strain γyz

Fig. 3. Thin strip to be twisted around z-axis



458

γyz x
l

 � 2
j

, (11)

which is the relation between shear strain and twist we seek.
Equation 11 with γyz from the second term of Eq. 8 finally
gives the twist angle

j D � �  � l w
d
dxt lα α

θ( )ÊËÁ
ˆ
¯̃

0
. (12)

Thus, the twist of a thin strip is not dependent on the
constant part of θ(x) but instead is proportional to the
gradient of θ. Because αt � αl, drying (Δw � 0) will give �

the same sign as  
d
dx

θÊ
ËÁ

ˆ
¯̃

0
; i.e., a positive spiral grain gradient

(θ increases with increasing radius) will give a positive �
and vice versa. The sum of influences on � of Eqs. 12 and 4
contains two terms which can act opposite to each other, as
is the case for Norway spruce. Norway spruce normally has
a left-handed spiral grain (θ0 � 0) at the pith which linearly
changes toward a right-handed spiral grain at the log

surface (  
d
dx

θÊ
ËÁ

ˆ
¯̃

0
�0).2,5

Twist of studs with arbitrary cross sections

A dimensional analysis of the twist angle of a stud with a
specified cross section b � h cut from a log at different
distances rm from the pith (see Fig. 4) is done under the
following assumptions: θ is a linear function (see Eq. 6)
which here is characterised by a value θm in the middle of

the cross section, and the constant gradient  
d
dr
θÊ

ËÁ
ˆ
¯̃

0
. � is

proportional to �Δw(αt � αl)l and is a function of θm,

 
d
dr
θÊ

ËÁ
ˆ
¯̃

0
, rm, and the cross section width b and height h. Then

�/[�Δw(αt � αl)l] is a function of θm,  
d
dr
θÊ

ËÁ
ˆ
¯̃

0
, rm, b, and h.

According to standard theory of dimensional analysis, �rm/
[�Δw(αt � αl)l] must then be a function of the four dimen-

sionless variables θm,  
d
dr

rm

θÊ
ËÁ

ˆ
¯̃

0
, b/h, and b/rm. Rewriting and

expanding � as a series according to Taylor’s formula,
retaining only the linear, first-order terms and using the

condition that � � 0 if   �  � θ
θ

m
d
dr

Ê
ËÁ

ˆ
¯̃

0

0 gives as the only

option the first-order approximation

j D � �  �  � l w C
r

D
d
drt lα α

θ θ( ) Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

2

0

m

m
(13)

where C and D are undetermined constants. The reason for
choosing 2C and not C as a constant is in order to keep
similarity with Eqs. 4 and 7. Now, in view of the discussion
of the case of the twist of a thin-walled cylinder and the
twist of a thin strip, the two terms in Eq. 13 can be physically
explained as follows: realistic studs have cross sections that
consist of more or less complete growth rings, growth-ring
half rings, or parts of growth rings that are quite flat. The
twist angle can be approximated as a sum of contributions
from both the effect of spiral grain of growth ring cylinders
according to Eqs. 4 and 7 and the effect of the spiral grain
gradient of flat growth rings according to Eq. 12. The C and
D constants determine the contribution of each term, and
we expect them to be of the order of magnitude �1. The
second term explains the perhaps surprising result from FE
calculations that Eq. 4 does not explain, namely, that a stud
with a cross section where the middle point and also all
other points in the cross section have a left-handed spiral
grain can still exhibit a right-handed twist after drying.

With Eq. 6 we can substitute θm for θ0 in Eq. 13 and get

j D � �  �  �  � l w C
r

C D
d
drt lα α

θ θ( ) ( )ÊËÁ
ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

2
20

0m
. (14)

Solving for the cross section radius rm0 which will give twist
angle � � 0, gives

r
C

C D d
dr

m0 � �
 � 

2
2

0

0

( ) Ê
ËÁ

ˆ
¯̃

θ
θ . (15)

If the r value where θ � 0 is notated as rθ0, then from Eq. 15
we get

r
C

C D
rm0 � 

 � 

2
2 0( ) θ . (16)

Equation 16 shows that if rm0 � rθ0, then D � 0 and no
gradient term exists. If rm0 � rθ0 then the gradient term exists
and D � 0. This fact can be used to experimentally prove
the existence of the second term; i.e., that D � 0. There is no
influence from the cross section dimensions b and h in the
first-order approximation according to Eq. 13, but such an
influence will exist if a second-order analysis is made.Fig. 4. Place of cross section of stud in log
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Materials, methods, and results

FEM calculations were made using ABAQUS10 with a cylin-
drical, linear elastic orthotropic material model for 50 �
100-mm cross sections. The FEM model has 50 � 10 � 50
parabolic elements and the boundary conditions only re-
strict rigid-body movements. The elastic, orthotropic mate-
rial data (see Table 1), are valid for Norway spruce and
taken from Ormarsson et al.7 A typical deformed stud is
shown in Fig. 5.

Twist angles when drying studs are calculated with FEM

for different values of θm,  
d
dr
θÊ

ËÁ
ˆ
¯̃

0
, and rm. The FEM results

for rm � 25mm and rm � 50mm are shown in Fig. 6a and 6b

as the influence of  
d
dr
θÊ

ËÁ
ˆ
¯̃

0
on � for constant θm and the

influence of θm on � for constant  
d
dr
θÊ

ËÁ
ˆ
¯̃

0
, respectively. The

linear behaviour shown in Fig. 6a and 6b agrees with the
predicted linear behaviour of Eq. 13 and an evaluation of C
and D by fitting Eq. 13 to the FEM results for varying rm

values gives the C and D values shown in Fig. 7. C � 0.48
and D � 1.05 are chosen here as the C and D values that
make Eq. 13 agree with linear FEM.

Twist angles � for studs have been measured11 and corre-
lated to the spiral grain angle measured on the stud surface

θstud. The result is � � 1.23 θstud for 50 � 100-mm cross
sections with rm � 25mm, Δw � �0.1, l � 1m, and αt � αl �
0.345. This result corresponds to Eq. 13 with C � 0.37 and
D � 0.74.

Table 1. Orthotropic material constants

Direction

Radial (r) Tangential (t) Fiber (l)

Elastic modulus Er, Et, El (MPa) 400 220 9700
Shear modulus Grt, Grl, Gtl (MPa) 25 400 250
Poisson’s ratio Jr�, Jrz, J�z 0.55 0.0124 0.0136
Moisture expansion coefficients αr, αt , αl 0.19 0.35 0.0045

Fig. 5. Finite element method (FEM) calculated deformed shape of 50

� 100-mm stud with rm � 25mm, θm � �3°, l � 3m,
d
dr
θÊ

ËÁ
ˆ
¯̃ 0

0� , Δw �

�0.11, αt � αl � 0.345. The deformation is exaggerated by a factor 2
a

b

m

m

m

m

m

Fig. 6. a Twist angle � as a function of 
d
dr
θÊ

ËÁ
ˆ
¯̃ 0

for θm � �1.5°. b Twist

angle � as a function of θm for
d
dr
θÊ

ËÁ
ˆ
¯̃ 0

� 0.044°/mm. Calculated with

FEM for rm � 25 mm and 50mm for a 50 � 100-mm cross section with
l � 3 m, Δw � �0.11 and αt � αl � 0.345
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Figure 8 shows the influence of each of the two terms of
Eq. 13 on � for the two sets of C and D constants mentioned
above, namely, C � 0.48 and D � 1.05 from linear FEM and
C � 0.37 and D � 0.74 from Trätek11 measurements. Equa-
tion 1 is also shown in Fig. 8.

Discussion

Figure 7 shows that the C and D values are reasonably
constant, and therefore Eq. 13 has good accuracy compared
with the FEM calculations for rm values in the interval of

25 to 225mm. The linear relation between  
d
dr
θÊ

ËÁ
ˆ
¯̃

0
and � for

constant rm and θm shown in Fig. 6a indicates the validity of
Eq. 13 and the influence of the second term in Eq. 13. In the
same way, Fig. 6b shows the linear relation between � and

θm for constant  
d
dr
θÊ

ËÁ
ˆ
¯̃

0
and rm, which shows the influence of

the first term of Eq. 13. The FEM results confirm that a
cross section with negative θ values in all material points all
over the cross section may achieve a positive twist if the

gradient  
d
dr
θÊ

ËÁ
ˆ
¯̃

0
is positive enough.

Comparison with the experimental results obtained at
Trätek11 (see Fig. 8 and Table 2) show that Eq. 13 overesti-
mates the twist if the C and D values which conform to
linear elastic FEM calculations are used. If the C and D
values are chosen to make Eq. 13 fit to the Trätek11 experi-

mental results, then we get lower C and D values. The
reason for the overestimation of twist in the FEM calcula-
tions may be the linear elastic assumption in the FEM calcu-
lations, which excludes plastic and creep effects. In practice,
this reduces the drying deformations and makes the FEM
calculation exaggerate the twist. Also, Δw is not constant in
practice, as is assumed in the FEM calculations, but instead
can vary over the cross section. Thus, Eq. 13 with C � 0.48
and D � 1.05 gives an upper limit for the twist angle �,
which can possibly be reached for a stud with no constraints
during drying and exposed to a very slow low-temperature
drying course of events with small creep or plastic effects.
Figure 8 shows the relationship between the C term and the
D term in Eq. 13 and that the D term is larger than the C
term for rm � 35mm. Also Fig. 8 shows that Eq. 1 overesti-
mates � for small rm values. This behavior was also observed
by Säll5 and Johansson et al.6

Equation 13 with C and D values adjusted to fit the
situation in question, whether it is an experimental or a

Fig. 7. C and D constants for varying radii rm evaluated from FEM

calculations on 50 � 100-mm cross sections with θ0 � �3° and 
d
dr
θÊ

ËÁ
ˆ
¯̃ 0

�

0  and 0.03°/mm, respectively. l � 3m, Δw � �0.11, αt � αl � 0.345

Table 2. Evaluated C and D factors

Method C D

From linear FEM 0.48 1.05
From experiments by Trätek11 0.37 0.74

Fig. 8. Twist angle � according to Eq. 13 shown as divided in the C
term and the D term and the sum of the terms and according to Eq. 1.
Linear FEM has C � 0.48 and D � 1.05 and the Trätek11 measurement

has C � 0.37 and D � 0.74. θ0 � �3.3°,
d
dr
θÊ

ËÁ
ˆ
¯̃ 0

� 0.044°mm , l � 3.0 m,

Δw � �0.10, and αt � αl � 0.345
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theoretical situation, could be a good choice for calculating
the twist angle � for a stud, knowing the spiral grain angle
θ at an arbitrary point in the log cross section, e.g., a point
on the log surface or a point on the stud surface. One
practical use of the formula is to predict the twist a certain
stud will achieve after drying with the aid of measured θ
angles on the log surfaces, e.g., in a sawmill.
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Abstract In this article, a one-dimensional and a two-
dimensional approach to the evaluation of local diffusion
coefficients for Norway spruce sapwood from measured
moisture content (MC) values are presented. A studied
wood sample was dried from the initial green condition to
about 15% mean MC, but here only the diffusive part of the
drying process between approximately 25% and 15% mean
MC was treated. Measured local MC values were based on
nondestructive X-ray computed tomography data. Finite
element calculations were performed with two alternative
diffusion coefficients to test the appropriateness of the dif-
fusion coefficients that were evaluated from the measured
MC values. The evaluated diffusion coefficients show inter-
esting dependence on MC and distance from the evapora-
tion surface. The advantage of using the methods presented
is that the diffusion coefficient is calculated on a local level
without having to define a function for the diffusion
coefficient’s dependency on other parameters.

Key words Wood · FEM · Drying · Diffusion coefficient ·
Computed tomography

Introduction

When physically describing the drying behavior of wood,
the drying process can be divided into the capillary part and
the diffusion part. In the capillary part, the moisture content

(mass of water/mass of dry wood; MC) is high and there is
free water present in the voids of the wood fibers. When the
MC is lower and there is moisture only bound in the cell
walls of the fibers, then the moisture flux is driven by diffu-
sion. Internal stresses are induced in the diffusion part of
the drying process due to anisotropic shrinkage, which may
cause checking and drying distortions that reduce the qual-
ity of the timber. Large MC gradients during the diffusive
process give a fast drying process but cause large stresses. It
is of importance to understand the drying behavior of wood
in order to avoid quality degradation due to drying. One
way to do this is through simulation.

Simulations of the wood drying process using three-
dimensional (3D) finite element method (FEM) can pro-
vide detailed and realistic information about the local MC,
local stress, and global deformation history. 3D FEM calcu-
lations require, among other material data, diffusion coeffi-
cients that are valid locally throughout the material. The
objective of this work is to determine local diffusion coeffi-
cients using nondestructive measurements and numerical
methods.

Alternative approaches to the evaluation of local diffu-
sion coefficients for Norway spruce sapwood are presented
based on experiment. A clearwood sample (Fig. 1) was
dried from the initial green condition to about 15% mean
MC (mean value for the wood sample in question), but here
only the diffusive part of the drying process between ap-
proximately 25% and 15% mean MC was treated. The mea-
sured local MC values were based on nondestructive X-ray
computed tomography (CT) data.

Several authors (Hukka,1 Hukka and Oksanen,2 Liu
et al.,3 Rosenkilde and Arfvidsson4) have found that the
diffusion coefficient for a certain wood sample is not con-
stant, but is dependent on MC in addition to the depen-
dence on temperature. The diffusion coefficients obtained
are global mean values for a wood sample of a certain size.

The CT method used here to measure local interior two-
dimensional (2D) densities and MCs of the wood sample is
described by Lindgren,5 Danvind and Moren,6 and Wiberg.7

The advantage of using the methods presented in this article
is that the diffusion coefficient is calculated on a local level

mailto:ekevad@ltu.se
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without having to define a function for the diffusion
coefficient’s dependencies on other parameters such as MC.
The possibility of using CT data to determine local proper-
ties in wood other than moisture properties, such as spiral
grain angles, is demonstrated by Ekevad8 and Sepulveda
et al.9

Theory

Isothermal conditions are considered, and a Cartesian co-
ordinate system and a referential (Lagrangian) viewpoint
are adopted in order to deal with the shrinkage of the
material. Thus, the coordinates x, y, and z denote the coor-
dinates of a material point in the green condition, and all
lengths, areas, and volumes are values in this green state
and remain constant during the drying process. In the first
approach to determining the diffusion coefficient D, the
moisture flux is assumed to be one dimensional (1D) in the
radial direction (x) and a modified Fick’s first law is
stated as

  
g D

du
dx

= - . (1)

where g = g(x, t) is the mass flux in the positive x direction
per unit area at position x at time t, u = u(x, t) is the MC at
x and t. u is used as the driving potential in the modified
Fick’s first law (Eq. 1) instead of using the moisture concen-
tration w = u r0, where r0 = r0(x) is the basic density of wood
(dry mass of wood per green volume). It was found experi-
mentally that u is a better way to express the amount of
moisture in our case where r0 varied in space (Fig. 2). This
was confirmed in our experiments, because it was found
that a gradient dw/dx π 0 could exist without creating a mass
flux, due to local variations of r0. In that case, dw/dx π 0 due
to a gradient dr0/dx π 0 but du/dx = 0. Physically it can be
reasoned that u is a better measure of MC than w when it
comes to bound water diffusion because water molecules

are attracted to wood molecules and not to a specific vol-
ume. Mass conservation and Eq. 1 give

    
u̇

d
dx

D
du
dx

= ˆ
¯̃

Ê
ËÁ

1

0r
(2)

which is a modified Fick’s second law. The general bound-
ary conditions to be used with Eqs. 1 and 2 are specified
values of u (essential conditions) or g (natural conditions)
or

    g u u= -( )•b (3)

(convective conditions or mixed conditions) on all or parts
of the boundaries. Here the convective condition is used for
the evaporation surface and the natural condition g = 0 for
all the other surfaces. The initial condition is u = u0(x, t0) at
the starting time t0. b is the mass transfer coefficient for the
moisture vaporization into the surrounding air on the
boundary surface, and u• is the equilibrium MC for wood
under ambient air conditions.

The equations for 2D mass flux in the x and y directions
are a modified Fick’s first law for an orthotropic material,

    
g D D= ( ) = - ( ) = -

Ê
ËÁ

ˆ
¯̃

g g u
u
x

u
yx y

T
T

, ,grad
∂
∂

∂
∂

(4)

where

  
D =

È

Î
Í

˘

˚
˙

D D

D D
xx xy

yx yy

(5)

is the symmetric diffusion coefficient matrix. Here it is
assumed that radial and tangential directions coincide
with the x and y directions, respectively (Fig. 1). Mass con-
servation and Eq. 4 give

    
u̇ u= ( )[ ]1

0r
div gradD (6)

or expanded

    
r ∂

∂
∂

∂
∂
∂
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Ê
ËÁ

ˆ
¯̃

+ +
Ê
ËÁ

ˆ
¯̃

(7)

which is a modified Fick’s second law. The boundary condi-
tions are specified values of u or g or convective conditions
(Eq. 3). The initial condition is u = u0(x, y, t0).

Materials and methods

A wood sample made of clear sapwood of Norway spruce
(Picea abies) with the green dimensions of 31, 42, and
205mm in the x (radial), y (tangential), and z (longitudinal)
directions, respectively, was dried in this study. Five sur-
faces of the sample were coated using polyurethane glue
(Cascol 1809, Casco) and aluminum foil (Fig. 1). The coated

Fig. 1. Wood sample. Asterisks and circles denote center points of cells
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surfaces were also thermally insulated using Styrofoam.
Three temperature sensors were placed within the sample
at 1, 11, and 21mm depths from the surface, but in different
positions in the longitudinal direction. One additional sen-
sor was placed on the surface. During drying, the humidity,
temperature, and speed of the circulating air was approxi-
mately constant at 43% relative humidity, 50°C, and 4m/s,
respectively. A Siemens Somatom AR.T. X-ray CT scanner
was used to capture a density image in the tangential–radial
plane of the interior at a constant longitudinal position
every 10min during drying.

Evaluation of D from the CT data, 1D method

u(x, t) values for small volumes (0.14 ¥ 0.14 ¥ 5mm3) in 3D
space (voxel values) were measured with CT (see Danvind
and Morén6 for a description of the method). In order to
reduce spread and increase accuracy, mean MCs u(xi, tj) for
seven discrete volumes along the x axis with center posi-
tions at xi = 2.0, 5.9, 9.8, 13.7, 17.6, 21.6, and 25.5mm for i =
1 to 7 were evaluated. A value of u at x8 = 29.2mm was set
equal to the value of u at x = x7. x0 = 0 was the surface
position, and x9 = 31.0mm denoted the inner, insulated
boundary. u values were measured at discrete time points,
tk, between t0 = 0h and t200 = 100h with a time step of 0.5h,
except between t = 83h and t = 95h and between t = 42.5h
and t = 44h due to malfunction of the equipment. Denoting
d/dx with a prime, using mass conservation and a central
difference scheme we get the mass flux gradient,

    
¢ = - = -

-( )
-( )

+ -

+ -

g u
u u

t ti
k

i i
k

i

i
k

i
k

k k

r r0 0

1 1

1 1

˙ (8)

where the subindex i denotes the position xi = 2.0, 5.9 . . .
29.2mm for i = 1 to 8 and superindex k denotes the time step
tk = 0, 0.5, 1.0 . . . h for k = 1 to 199. Integration of Eq. 8 gives
the surface mass flux

    
g g t g dx g xk

k i
k

i
i

l

surf = ( ) = - ¢ = - ¢
=
ÂÚ0

1

8

0

, D (9)

where Dxi = xi+1 - xi is the length in the x direction of the
volume associated with each value ui. The mass flux at posi-
tion i is

    
g g x t g g dx g g xi

k
i k

k k k
l

k
l

l

ix

= ( ) = + ¢ = + ¢
=
ÂÚ, surf surf D

10
(10)

where Dxl is the length in the x direction of each of the
volumes that has x coordinates lower than xi. Now Eq. 1
with a central difference scheme gives

  
D
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g x x

u u
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(11)

The mass transfer coefficient b is evaluated from Eq. 3 as

    
b k

k

k k

g

u u
=

-( )•

surf

surf

(12)

where uk
surf is evaluated by a parabolic extrapolation to the

surface using the three ui values that are closest to the
evaporation surface.

Evaluation of D from the CT data, 2D method

Mean u(x, y, t) values for cells, 4.1 ¥ 4.1 ¥ 5mm3, in 3D space
are evaluated from the CT data. The total mass flux, gk

surf,
transferred from the sample at time t = tk is calculated by
using the total mass decrease, the time step Dtk = tk+1 - tk-1

and the area of the convective surface, Asurf. The mass flux is
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m m
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where subindices i and j denote the positions in the x and y
directions, respectively. M = 7 and N = 9 are the number of
cells in the x and y directions, respectively (Fig. 1), and m is
mass.

The mass transfer coefficient, bk, at time t = tk is calcu-
lated as
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where uk
surf,j is the MC at time t = tk for the surface of a cell

adjacent to the evaporation surface with y = yj. uk
surf,j is

linearly extrapolated from the MCs of the two cells next to
the surface. Asurf,j is the evaporation surface area of the cell
at y = yj. The modified Fick’s first law of diffusion (Eq. 4) is
used for the mass flux of the interior cell’s boundary sur-
faces. In the first iteration of an iterative scheme, the cou-
pling term, Dxy in Eq. 5, is set equal to zero. For a cell on the
evaporation surface at position (i, j) = (surf, j), surface mass
transfer is assumed to govern the mass flux, which is calcu-
lated using bk from Eq. 14. The modified Fick’s second law
(Eq. 7) is used for mass balances in cells, and the spatial
derivatives of D are assumed to be zero in a cell. Based on
these assumptions, Eq. 7 can be stated in numerical form as:
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In Eq. 15 it is assumed that all elements have the same size,
Dx, and Dy. From the CT experiments, all parameters except
Dx,i,j and Dy,i,j can be achieved for each cell of 30 ¥ 30 voxels
in the CT image. Hence, there is one equation (Eq. 15) and
two unknowns for each cell; thus, the equation system for
all elements is underdetermined. By setting Dx,i,j and Dy,i,j

equal in adjacent cells, in this case 2 ¥ 6 cells (8.1 ¥ 24.3mm),
the number of unknowns for the equation system is re-
duced, and thereby an overestimated system is achieved
which is solved in a least-squares sense using standard
Matlab10 routines. By moving the position of the 2 ¥ 6 cells
and repeating the calculation procedure 12 times, once for
each movement of the cells, 12 sets of Dx,i,j and Dy,i,j are
achieved in each cell. The median values of the 12 solution
sets are then taken as estimated solutions of Dx,i,j and Dy,i,j in
each cell.

In a second iteration using ui,j, Dx,i,j, and Dy,i,j, the mass
fluxes, gx,i,j and gy,i,j, are calculated using a numerical form of
Eq. 4. gx,i,j and gy,i,j are used to recalculate the diffusion
coefficients, including the coupling term, Dxy. This proce-
dure gives two equations and three unknowns, Dxx, Dyy, and
Dxy, per cell; i.e., when setting up a matrix system of equa-
tions for all cells, an underdetermined system is obtained.
This time the number of unknowns is reduced by setting
Dxx, Dyy, and Dxy constant in 2 ¥ 2 cells and by solving the
overdetermined system in a least-squares sense. As before,
by moving the position of the 2 ¥ 2 cells and by solving the
system four times, four sets of diffusion coefficients per cell
are achieved in each cell, and the median values are chosen
as solutions. Using the coupled diffusion coefficients, local
mass fluxes can be derived, and the procedure of deriving
diffusion coefficients can be iterated until values stabilized.
Here, only the first and second iterations have been done.
In this study, the diffusion in the radial direction (x) was to
be studied. Therefore, diffusion coefficients in the horizon-
tal direction (y) of the CT image are not presented.

FEM calculation

ABAQUS11 was used with a 3D isothermal and isotropic
diffusion model as a solver of the diffusion equation (Eq. 6).
As boundary conditions, we had zero mass flux on five
surfaces and convection on the evaporation surface (Fig. 1).
The initial condition u(x, t0) at t0 = 30.1h was taken from the
measured data. Based on experimental findings shown be-
low, two alternatives for D were used. As the first alterna-
tive D = D(u) was adapted, and as a second alternative D =
D(u, x) was used. The measured values of b(u) were used
during the FEM calculations.

Results

All results shown in this article relate to the diffusion part of
the total drying process and hence use a time scale that
starts at time 30.1h. The temperature differences between
three internal positions in the test sample and in the air

were <0.8°C during the test. r0(x) is shown in Fig. 2, u(t) for
different x values is shown in Fig. 3, and u(x) for different
times in Fig. 4. D(u) for the 1D method is shown in Fig. 5 for
x £ 13.7mm and b(u) is shown in Fig. 6. For the 2D method,
D(u) is shown in Fig. 7 and b(u) in Fig. 6. The objective in
the FEM calculations was to find D values that gave u(x)
good correlation to the experimental result at the final time
t = 99h. The agreement between experiment and calculation
was then checked at an intermediate time t = 65h. The FEM
simulation using the first alternative D = D(u) according to
Fig. 8a gives an agreement with the CT measurements
according to Fig. 4a. The second alternative D = D(u,x)
according to Fig. 8b has an agreement according to Fig. 4b.

r 0

Fig. 2. Measured basic density r0(x)

x
x
x
x
x
x
x

Fig. 3. Measured moisture content u(t) for different x values in con-
secutive order from the lowest curve with the lowest x value
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The initial conditions u0 at t0 = 30.1h for the FEM simula-
tions are the same for both alternatives.

Discussion

For the 1D method, D shows a rather clear dependence on
u and x as is seen from Fig. 5. The curves for x = 5.9, 9.8, and
13.7mm agree well (Fig. 5) but the curve for x = 4.0mm is
translated to the left and downward compared with the
other curves. The curve for x = 17.6mm (not shown) agrees
quite well with the curves for x = 5.9, 9.8, and 13.7mm, but
shows more spread. The curves for x = 21.6 and 25.5mm

t
t
t

t
t
t

t
t
t

t
t
t

Fig. 4a,b. Moisture content u(x) at different times t measured with
computed tomography and calculated with finite element method
(FEM). a FEM approach D = D(u). b FEM approach D = D(u, x)

x

x

x

x

Fig. 5a,b. D(u) evaluated with the one-dimensional (1D) method for
different x values. a x = 4.0 and 5.9 mm. b x = 9.8 and 13.7mm

a

b

a

b
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Fig. 6. b(u) evaluated with the 1D and 2D methods with alternative
surface moisture contents. uext, linear extrapolation from two adjacent
u values or parabolic extrapolation from three adjacent u values; umid,
mean value of the surface cell; i.e., umid = u(xi=1, t

k)

Fig. 7. Diffusion coefficient
D(u,x) evaluated with the 2D
method. x = 2.0, 5.9, 9.8, 13.7,
17.6, 21.6, 25.5 mm shown as
alternating series of dots and
crosses

(not shown) show even more spread, but they seem to agree
with the curves for x = 5.9, 9.8, 13.7, and 17.6mm. Thus,
there is a unique curve for x = 4.0mm, and all of the rest of
the curves at the other x values seem to agree reasonably
well. The reason for the large spread of D for large x values
is probably the decreasing MC gradient and the decreasing
mass flux with depth (x), which make the numerical errors
large (Eq. 11). The overall conclusion is that the diffusion
coefficient is a function of MC and depth, D = D(u,x). The
dependence on u is especially large in the interval where
16% < u < 30%, while for u < 16%, D seems rather constant.

The dependence on the distance from surface x is only
significant when x < 5mm, i.e., near the surface. b shows
more spread at lower mean MC due to smaller usurf - u• than
at higher mean MC (Fig. 6).

For the 2D method, only Dx values are presented. This is
due to large spread in Dy, probably caused by the one-
directional drying resulting in almost constant values of u in
the y direction, which strongly influenced the derivation of
Dy. Dx values (Fig. 7) are similar to the results from the 1D
method, but the results have less spread. A reason for the
lower spread is probably the calculation method in which
the median values of several solution sets are taken as D.
b values for the 2D method are lower than for the 1D
method (Fig. 6). This is due to the different choices of usurf.

When trying to reproduce the original, measured u(x)
values at t = 99.1h with the FEM calculation, the second
alternative with D = D(u, x) is best (Fig. 4b). This shows the
validity of the experimentally derived D values and the
dependence of D on distance to the evaporation surface.
The first alternative with D = D(u) gave good correlation at
t = 99.1h but poor correlation at t = 65.1h (Fig. 4a).

In Fig. 8b, evaluations of D from Hukka1 and Rosenkilde
and Arfvidson4 are compared with our values used for FEM
calculations. Their values and ours agree quite well, at least
for u < 15%. The discrepancy in D for u > 20% between our
values and theirs could be due to differences in wood mate-
rial (Hukka1 used Norway spruce heartwood and
Rosenkilde and Arfwidson4 used Scots pine sapwood) and
differences in evaluation methods. Hukka1 assumed that
D(u) is an exponential function and Rosenkilde and
Arfvidson4 used another type of curve-fitting method. The
rate of the mean MC for a wood sample is essentially con-
trolled by b and not D when u is high, and vice versa.
However, an appropriate D(u) description is important for
realistic local u(x) values.

The dependence on depth can be a dependence not on
depth itself but via some other parameter (not measured
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x

x

x

x

Fig. 8. a D(u) used in the first approach of FEM calculations. b D(u, x)
used in the second approach of FEM calculations. Linear interpolation
of D for 0 < x < 8mm using the curves for x = 0 and x = 8mm.
Comparison values of Hukkas1 values are for Norway spruce heart-
wood, those of Rosenkilde and Arfvidssons4 are for Scots pine
sapwood

here), which itself is a function of depth. Such a parameter
is stress, because there are probably large stresses near the
surface. Also, u. is a function of depth because the material
near the surface has a faster changing moisture situation
than the material far away from the surface.

Another possible reason for the behavior of D near the
surface could be the position of the evaporation front dur-
ing drying. Wiberg7 and Rosenkilde and Arfvidsson4 show
how the evaporation front recedes into the material in the
capillary regime of drying, creating a dry “shell” near the
surface. This dry shell probably exists also in the beginning
of the diffusion regime. The dry shell may have caused ui=1,j

to have lower values than they would have had if the dry

shell had not existed. Hence, one can propose to include a
dry shell formulation in future evaluations of D, as sug-
gested by Salin.12

The calculations of D are sensitive to measurement er-
rors of r0, u, t, and x values, because derivatives of u in space
and time are estimated by numerical schemes (Eqs. 8–11
and Eqs. 13–15). An error estimate of u based on the spread
of the graph of u.(t) calculated with a central difference
approximation (Eq. 8) was made. The assumption was that
u(t) is a normally distributed stochastic variable and that t
values are exact, which results in an estimated standard
deviation of u of the order of 0.04% when u is approxi-
mately 20%. This standard deviation of u is considered low
in comparison with earlier values (see Danvind13). It is
believed that this spread in measured u values is the main
cause of spread in D. The spread in D increases when u
decreases.
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Abstract:
Wood in general and wooden studs in particular are often distorted due to 
uneven shrinkage during the drying process in the sawmill. Twist is often the 
most detrimental of all types of distortion, and it is caused by spiral grain in 
combination with variations in moisture content. For sawmills, the objective 
is to produce dried, straight boards, and one method of dealing with boards 
with excessive spiral grain is to sort them out and then dry them in a 
pretwisted position in order to obtain straight boards after drying. 

 A model using the finite element (FE) method for the simulation of drying 
twist distortions was first calibrated against laboratory experiments in which 
boards were dried with and without restraints and pretwists. Secondly, after 
the calibration, the FE results were compared to industrial test results for 
boards that were dried without restraints or with restraints with zero pretwist, 
i.e., straight restraints. The FE model used an elastic-ideally plastic material 
model in order to obtain permanent deformations. The calibration was to set 
the yield stresses so that there was a good match between FE results and 
results from the laboratory experiments. The comparison between the 
industrial test results and the FE results showed that the FE model is capable 
of realistic simulations of drying boards with and without restraints and 
presumably also pretwists.  

Keywords: Distortion, Drying, Elastic, FEM, Plastic, Pretwist, Simulation, 
Spiral grain, Straight, Studs, Timber, Twist, Warp, Wood, Yield  



1. INTRODUCTION 

One important disadvantage of wood is that wood can distort. The result of 
this negative property is that wood products have lost market shares in 
applications where wood traditionally has been the natural choice of material. 
Steel studs have replaced wood in many applications mainly due to lack of 
straightness of the wooden studs (Johansson et al. 1994; Eastin et al. 2001).
 Many scientists have studied wood distortions and the parameters that 
influence the magnitude of the distortion arising when moisture content 
(MC) changes (Danborg 1994; Woxblom 1999; Perstorper 1994). Three 
common modes of distortion are twist, bow and crook. Twist is mainly 
influenced by the magnitude of spiral grain and the distance from the pith 
(Johansson et al. 2001), but also by the gradient of the spiral grain angle 
(Ekevad 2005). Bow and crook are influenced by differences in the 
longitudinal shrinkage in different parts of a piece of wood and by growth 
stresses. The differences in longitudinal shrinkage depend mainly on the 
distribution and magnitude of compression wood and juvenile wood 
(Johansson & Klieger 2002). The juvenile wood content in a board can be 
controlled by proper selection of sawing pattern, i.e., by controlling where in 
the cross-section a board is sawn. Compression wood in logs is today mainly 
estimated by visual inspection of the end surfaces of the logs but can also to 
some extent be predicted with aid of the longitudinal shape of the logs 
(Öhman 2001).  
 Spiral grain occurs naturally more or less in all trees. Instead of running 
parallel to the pith, the grain runs spirally around the trunk like a helix. Since 
wood is an orthotropic material with higher shrinkage perpendicular to than 
parallel with the grain, the tree will twist when dried, and a board cut from 
the same tree will also twist (Säll 2002). The normal pattern on the northern 
hemisphere is that the spiral is left-handed in young wood, with a change to 
right handed in mature wood (Skatter & Kucera 1998). Some trees, however, 
seem to stay left-handed and just increase the left-handed spiral with age. 
Boards sawn from these trees have a very large tendency to twist (Nyström 
2002). Spiral grain angles on logs and boards can be measured with aid of the 
tracheid effect. The tracheid effect utilizes the light-conducting properties of 
the softwood tracheids to measure the spiral grain angle. A small laser point 
is projected onto the wood surface. The light transmitted in the wood and 
scattered back forms an elliptic shape extended in the direction of the fibres. 
The ellipse of light is registered with a camera, and the orientation of the 
ellipse’s major axis corresponds to the fibre direction (Nyström 2002). 



 Twist of boards with spiral grain occurs during MC changes and is most 
evident during the drying process. How the drying process is performed is 
therefore crucial for the final result. One way to decrease the twist problem is 
to pretwist the drying stacks in the opposite direction of the normal twist 
direction. This method has been in practise in New Zealand and Australia for 
many years in the drying of Pinus radiata (Northway 1981; Visser & 
Vermaas 1988). However, they have not reported how great the pretwist 
should be for different grain orientations in the sawn board and how different 
process parameters affect the result. For Norway spruce (Picea abies (L.)
Karst.), reports of results from pretwisting experiments have recently been 
published by Salin et al. (2005) and Salin (2005).  
 Simulations of the drying of wood and of drying distortions of wood have 
been performed with finite element (FE) simulation methods or other 
methods by many scientists (Thomas 1983; Pang 1996; Mårtensson & 
Svensson 1997; Ormarsson 1999; Hammoun & Audebert 1999). However, it 
seems that no simulation of the adequate amount of pretwist that is needed in 
order to produce straight boards has been done. Thus, the objective of this 
work was to determine the magnitude of pretwist (depending on size of spiral 
grain angle) that was needed to keep boards straight after drying and to do 
this by using a (FE) simulation model. The FE results were to be compared 
with experimental results from the laboratory and from an industrial test in 
order to ensure the validity of the FE results.  

2. MATERIAL AND METHODS 
Laboratory experiments
The experiments (Salin et al. 2005) were performed in a laboratory dryer in 
which up to 4 boards can be dried in a twisted position. A few boards free to 
move can be dried at the same time. The twisted boards were fastened in a 
specially designed steel frame, which was inserted and locked into the dryer 
(see Fig. 1). The boards had to be about 1.5 m in length, and both ends were 
fastened by bolts in holders so that the effective twisted length was 1.37 m. 
The holder in one end was fixed and the other could be turned around an axis 
(in the board direction) and fixed in the position wanted. The torsional 
moment needed to twist the board into that position could also be measured. 
The drying schedules used in the experiments were quite normal, with a 
gradually increasing wet-bulb depression. However, the drying schedule was 
based on “constant dry bulb, decreasing wet-bulb temperature” and not on 
“constant wet bulb, increasing dry bulb-temperature”, which is more 
common in Scandinavian practice. 



Fig. 1. The picture shows the ends of four boards fastened in a specially 
designed steel frame. The frame with the boards is inserted and locked into 
the dryer. 

In a first step, 16 Norway spruce (Picea abies (L.) Karst.) boards with 
dimensions 47 x 100 mm and a length of about 1.5 m were dried completely 
free to twist and move. The boards were not from the same tree or the same 
log. Mean characteristic properties were measured for each board, namely 
spiral grain angle (by the scratching method on the sap side of the board), 
final MC, density, distance from the pith and twist both before and after 
drying. In the next step, a series of drying experiments with pretwisted 
boards was performed in the drier described above. In this step, 18 Norway 
spruce (Picea abies (L.) Karst.) boards with the same dimensions as the 
previous boards were dried. For each board the same mean characteristic 
properties as in the first step were measured, but in addition, the pretwist 
angle was also recorded. 



Industrial test 
The industrial test (Nyström 2002) was carried out at a sawmill in northern 
Sweden that was sawing Norway spruce (Picea abies (L.) Karst.) at the time. 
The spiral grain angle  (positive if right-handed) was measured on the log 
surface with a matrix camera utilizing the tracheid effect (Nyström & 
Grundberg 2002). All boards included in this study were square sawn and 
curve sawn. A total of 843 boards from the main yield were divided into six 
spiral grain classes according to the value of the spiral grain angle of the log 
to which they belonged. Each class was represented by the mid value of the 
interval as approximation of the spiral grain angle. The boards were also later 
measured manually for twist. The square-sawing pattern made the main yield 
touch the pith with one side. Thus the distance from pith was approximately 
constant for all boards with the same dimensions. The spiral grain angle 
classes of the 470 selected boards that were taken out to be included in this 
study (out of the total of 843 boards from the main yield) are described by 
Table 1. The reason for using only 470 selected boards was that the measured 
spiral grain angle for all produced boards followed a normal distribution, so 
the number of produced boards in the middle spiral grain classes was much 
higher than the number of produced boards in the extreme spiral grain 
classes. Therefore, only a randomly sampled partial set of the middle spiral 
grain classes was included in this study in order to get a more level number 
of boards in each spiral grain class. The distribution in Table 1 is thus not a 
true representation of the entire population. 

Table 1. Number of boards for different dimensions and spiral grain angle 
classes.

Spiral grain 
interval (°) <-5° -5°<

<-2.5°
-2.5°<
<0°

0°<
<2.5°

2.5°<
 <5° 5°<

Sum for 
all
angles

Mid value 
(°) -6.25° -3.75° -1.25° 1.25° 3.75° 6.25°  

38x125 mm 2 20 60 79 82 31 274 
50x150 mm 13 25 69 11 42 36 196 
Sum for 
both
dimensions

15 45 129 90 124 67 Total:
470



The sawn boards were dried in normal production at the sawmill. The boards 
were placed side by side in layers with stickers in between every layer. A 
number of layers with stickers in between were placed on top of each other in 
a drying stack. Four drying stacks were then placed on top of each other and 
placed in the kiln. All stacks of measured boards were placed as the top 
stacks in the kiln and thus without load on the top layers. Each stack 
comprised 23 or 20 layers of boards for thicknesses 38 or 50 mm 
respectively. The layers were numbered from the top to the bottom so that 
the top layer number was 1, and this was the layer in which all the boards 
could move freely. The load on every consecutive layer increased with 
increasing layer number due to the weight of the boards and stickers above 
the layer in question. All dimensions were dried to an MC of 18 % with a 
drying schedule with a dry-bulb temperature of 75ºC and a wet-bulb 
temperature of 60ºC at the end of the drying phase (corresponding to an 
equilibrium MC of 6.4 %).  
 Twist was manually measured after drying by laying each board on two 
parallel supports 3 m apart. The size of the twist was defined as the distance 
from the support to the fourth edge of the board while the three first edges 
were in contact with the support. To avoid the effects of cupping, all boards 
were measured with the sapwood side (concave) towards the support. 
Positive and negative twists were defined as in Fig. 2. The angular twist was 
calculated from these measurements. 

Fig. 2. Manual twist measurements where right-handed twist was defined as 
positive and left-handed twist as negative and measured over 3 m length. 

Finite element analysis 
In a first step, the drying process was simulated using a three-dimensional FE 
diffusion model with the MC u (mass of water/mass of dry wood) as the 
driving potential. A convective boundary condition was used where the 
boundary mass flow was )( EMCxM uug , where M was the mass 
transfer coefficient and uEMC was the equilibrium MC of wood in the 



surrounding air. ux = min(u, ufsp) where u was MC on the boundary surface 
and ufsp was the fibre saturation point. The boards were all assumed to have 
an initial MC of 80 % and an initial temperature of 20°C. Fig. 3 shows the 
values of uEMC and (dry) temperature T of the surrounding air used to 
simulate the complete drying schedule for both the laboratory experiments 
and the industrial test. It was the normal drying schedule at the sawmill 
where the industrial test was performed. The drying schedule shown in Fig. 3 
was used for all boards with thickness 47 and 50 mm, but was shortened 10 h 
for boards with thickness 38 mm.
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Fig. 3. Dry temperature T and equilibrium MC uEMC of the surrounding air 
as a function of time. Input to the convective boundary condition of the 
diffusion model and used to simulate the drying schedule for boards with 
thicknesses 47 and 50 mm. 

 The diffusion coefficient and the mass transfer coefficient were taken from 
experiments (Danvind & Ekevad 2005) valid for Norway spruce (Picea abies 
(L.) Karst.), and the temperature was assumed to be uniform and equal to the 
dry temperature throughout the whole of the boards. The temperature 
dependence of the diffusion coefficient was an Arrhenius equation taken 
from Wiberg & Morén (1999), but the mass transfer coefficient was assumed 
not to depend on temperature. The commercial FE programme ABAQUS 
(Anon. 2004) was used together with user subroutines in order to model 



wood as an orthotropic material. The orthotropic axes were modelled in a 
cylindrical coordinate system modified to take into account the spiral grain 
angle  to get appropriate radial, tangential and longitudinal directions as in 
Ormarsson (1999). The results from the first step were the distribution of u in 
the body as a function of time.  
 Then, in a second step, the stresses, strains and displacements (as functions 
of time) were calculated using the previously calculated distribution of u as 
input. In order to achieve permanent plastic deformations, an elastic-ideally 
plastic material description was introduced (Lubliner 1990; Clouston & Lam 
2001; Mackenzie-Helnwein et al. 2005). A polynomial yield function (Tsai 
& Wu 1971; Deteresa & Larsen 2003) was used to calculate the yield limit 
and the direction of the plastic strain increments. Of the available 27 material 
coefficients in the yield function, a total of 9 material coefficients were set to 
be nonzero. These 9 material coefficients were calculated from the tension- 
and compression-yield stresses for one-dimensional (1D) normal loading in 
the three orthogonal directions and the shear yield stresses for 1D shear 
loading in the three shear directions. Since true yield stresses were not 
known, at first, 1D ultimate stresses in tension and shear were taken partly 
from strength values in Siimes (1967) and partly estimated from data in 
Wood Handbook (Anon. 1999) (see appendix). The three ultimate stresses in 
compression were set to half the value of the corresponding value in tension, 
based on observations of the relation between the ultimate stress limits in 
tension and compression (Wood Handbook 1999; Mackenzie-Helnwein et al. 
2005). The material coefficients were functions of MC and temperature. 
Then, these ultimate stresses were multiplied by a factor S, 0 < S < 1, and S
was varied in order to give FE results that were as close to the laboratory 
results as possible. In this way, S was iterated and found to be 0.20, and the 
same S = 0.20 was used for all FE simulations that were intended to resemble 
the industrial test. The boundary conditions in the second step were fixed 
displacements at the ends (due to stickers) for the cases with specified 
pretwist or completely free displacements for freely drying boards. The 
remaining twist of the boards after drying, cooling to room temperature and 
removal of the stickers was taken as the result from the second step.  
 One of the most important input parameters when it came to twist 
calculations was the spiral grain angle and its dependence on distance from 
pith. Here was assumed to be a linear function of the radius varying from a 
constant value of -3.3° (i.e., left-handed 3.3°) at the pith (Nyström & 
Grundberg 2002) to the value in question either measured on the board 
surface (in the laboratory experiments) or the log surface (in the industrial 
test). This assumption made the gradient of  vary with the measured values 



of . Both  itself and the gradient of  influence twist (Stevens & Johnston 
1960; Ekevad 2005). 
 The functions that were used for the moisture and temperature dependence 
in the elastic-ideally plastic material formulation and the fiber saturation 
point are shown in the appendix. Also shown are all numerical values of the 
coefficients that were used in the material equations described above.  

3. RESULTS 
Laboratory experiments
A regression analysis for the boards that were free to move during drying 
showed a significant relationship between  and twist after drying. No 
correlation to the final MC (shrinkage) and the distance from the pith was 
found. The correlation found may be expressed as 

220.1                                                          (1) 

where  was the twist angle (o/m, positive if right-handed) and the coefficient 
of determination was R2 = 0.81. The result is also presented in Fig. 4. Eq. 1 
predicts the amount of twist for boards located at the top of the kiln stack 
when no top loading is applied.  

 For the 18 boards that were dried with various amounts of pretwist, only 
the pretwist angle and  were found to significantly influence twist after 
drying. As above, no correlation with final MC or the distance from the pith 
was found. The drying schedule used was the same as for the free boards 
described above. The correlation found was 

p812.0510.0                                     (2) 

where p was the pretwist used (o/m, positive if right-handed) with R2 = 0.89. 
p was kept constant for each board during the drying process. The results are 

illustrated by Fig. 5, which compares measured twist and predicted twist 
(Eq.2) after drying. 

Finite element simulations of laboratory experiments 
Fig. 6 shows the results for the FE simulations of the laboratory experiments 
for freely drying boards and pretwisted boards with p = 0°/m and p = 2°/m 
for the factor S = 0.20 compared to the laboratory results according to Eq. 2. 
A higher value of S than 0.20 will not give the difference in slope between 
free and pretwisted boards that is evident from the laboratory experiments.  
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Fig. 4. Twist after drying as a function of the spiral grain angle  for boards 
that are free to move. Dots are measured twist, and the line is predicted twist 
calculated as 220.1 , (Eq. 1). 

Industrial test and corresponding FE results 
Figs. 7 and 8 show industrial test results and corresponding FE results for 
boards with dimensions 38 x 125 mm and 50 x 150 mm respectively. The 
industrial test results are shown as individual board results and trend lines. 
One symbol and trend line are used for layer 1 and 2 together and another 
symbol and trend line are used for layers 10 and higher. Test results for 
layers 1 and 2 together correspond approximately to FE results for freely 
drying boards, and test results for layers 10 and higher together correspond 
approximately to FE results for boards with pretwist equal to zero. The trend 
lines for the test results are lines fitted through the median twist values of all 
boards in each spiral grain angle interval.  
 For 38 x 125 mm boards in Fig. 7, the curve for the FE results for freely 
drying boards is above the trend line for the test results for layers 1 and 2. 
Also, the curve for the FE results for pretwist = 0 lies above the test results 
for layers 10 and higher. The slopes of the FE result curves agree with the 
slopes of the corresponding trend lines for the test results. 
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Fig. 5. Measured twist after drying as a function of predicted twist after 
drying for 18 boards which were dried with various amounts of pretwist p.
Predicted twist  was calculated as p812.0510.0 , (Eq.2), where 

 was spiral grain angle. Dots are measured twist, and the line is equal 
measured and predicted twist. 

 For 50 x 150 mm boards in Fig. 8, the FE results for freely drying boards 
and the FE results for boards with pretwist = 0 approximately agree with the 
trend lines for the corresponding test results in the left half of the diagram, 
i.e., for left-handed spiral grain angles on the log surfaces. On the right side, 
i.e., for right-handed spiral grain angles on the log surfaces, the FE results are 
above the corresponding trend lines for the test results. The slopes of the FE 
result curves are higher than the slopes of the corresponding trend lines for 
the test results.  

4. DISCUSSION 
Laboratory experiments
The reason for the lack of correlation of the twist after drying to the final MC 
and the distance from the pith was presumed to be the small variation in 
these variables and the limited number of boards. Eq. 2 shows quite clearly 
that it was possible to “deform” a board by a pretwist operation, so that it 
became much straighter than a board that was free to move during drying. 



This applies to the situation shortly after the drying process; i.e., long-term 
behaviour has to be investigated separately. 
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Fig. 6. Experimental results according to p812.0510.0 , (Eq. 2), 
for 47 x 100 mm boards which are free or pretwisted 0°/m or 2°/m during 
drying and corresponding FE results for S = 0.20. 

Finite element simulations of laboratory experiments 
The value S = 0.20 was found to give the best agreement between simulation 
and laboratory results. This may be regarded as a low value; i.e., it predicts 
low yield stresses, at least at room temperature, compared to the ultimate 
stresses. However, the dominant part of the drying process takes place at a 
high temperature (70°C to 75°C), and the value S = 0.20 was therefore 
believed to best predict yield stresses at this high temperature. S was assumed 
to be constant in this paper, even though in reality S may depend on 
temperature and MC. The largest discrepancy between FE results and 



experimental results appears for the freely dried boards in which the FE twist 
results are larger than the experimental results; i.e., the FE method (FEM) 
gives more right-handed twist than the laboratory experiments for the same 
spiral grain angle. 
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Fig. 7. Results from industrial test and corresponding FE results for 38 x 125 
mm boards. Linear trend lines fitted through experimental median points. 

Industrial test and corresponding FE results 
The FE results agree well with the test results, bearing in mind the spread of 
the test results for individual boards. In detail, there is a tendency towards 
higher FE twist results than the test results, especially for right-handed 
(positive) spiral grain angles on the log surfaces. It is believed that most of 
the discrepancies between FE results and measurements that are shown in 
this paper are caused by the assumptions about the distribution of the spiral 



grain angle, the assumptions regarding the yield stresses and also possible 
bias error in the industrial measurement of the spiral grain angle. However, 
other discrepancies may also be of influence, namely that the drying in the 
laboratory experiments took place on all four sides of the boards whereas in 
the industrial test drying took place on only two sides due to the side-by-side 
placement of the boards in the drying stack. Also, the restraints at the ends of 
the boards in the laboratory experiments and in the simulations are not 
similar to the restraints in the industrial test.
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Fig. 8. Results from industrial test and corresponding FE results for 50 x 150 
mm boards. Linear trend lines fitted through experimental median points. 

This is because the end of a board in a drying stack in the industrial test may 
be placed a bit from the nearest sticker and thus a bit of the board near the 
end may be free. Also, in the industrial test there are several (at the most 
eleven) stickers along the length of a board. The drying scheme used in the 



laboratory experiments and in the industrial test is not in detail the same, and 
especially the cooling phase may be different and may not be the one shown 
in Fig. 3. This is due to the fact that the drying scheme in Fig. 3 is an 
estimate of the desired values of the conditions as a function of time, and not 
the actual values. The final MC may also differ between the boards in the 
simulation and in the industrial test. The measurements of the spiral grain 
angle in the industrial test were done on the outer log surfaces, and the 
relevant spiral grain angles are in the board cross–sections, which are near 
the pith. This means that the relevant spiral grain angles in the board cross-
sections and the value of the gradients of the spiral grain angles are sensitive 
to the assumption of the spiral grain angle value at the pith (-3.3°) and the 
assumption of a linearly varying spiral grain angle. Values of the yield 
stresses for Norway spruce (Picea abies (L.) Karst.) as a function of 
temperature and MC are not known, and the values found here from the 
calibration between the FE results and the laboratory experiment results 
depend on the assumption of a constant ratio between yield stresses and 
ultimate stresses even if the temperature and MC change, and that may not be 
an appropriate assumption. The industrial test was performed at full 
production speed, and there is a possibility that the spiral grain angles may 
have a bias error. Such a bias error would move the experimental points in 
Figs. 7 and 8 sideways, and that could explain part of the discrepancy 
between FE results and the industrial test results. Further tests of the FE 
model and more experiments are necessary in order to further increase the 
accuracy of the model and its predictions. 
 As a by-product, the calibration of the model gives as output the yield 
stresses for wood. However, it is unclear whether these yield stresses are 
realistic as yield stresses for wood or if they are only a means of curve-fitting 
this model to the experimental data. Thus, a detailed knowledge of reliable 
yield stresses for wood as a function of relevant temperatures and MCs is 
necessary in order to further investigate this issue, and that information is to 
a great degree lacking today. Also lacking is an explanation of what the 
causes of plasticization of wood are. Permanent deformations are only caused 
by permanent rearrangement of material, and it is important to discover the 
mechanisms of that rearrangement. The appropriateness of the elastic-ideally 
plastic model compared to other models such as mechanosorptive material 
models or combined elastic-plastic-mechanosorptive material models is 
unknown, and such an investigation would be beneficial. 



Conclusions
The results show that realistic and permanent twist deformations can be 
achieved with this elastic-ideally plastic material model for industrial cases 
with pretwist = zero and for freely drying boards with no restraints. The 
model is presumably also capable of predicting the outcome for industrial 
cases with pretwists differing from zero, as was shown in the laboratory 
experiments, but no industrial confirmation of that capability was done. 
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9. APPENDIX 
Material coefficients used in the FE simulations 
Indices 1, 2 and 3 stand for radial, tangential and fibre directions 
respectively. Indices 1 to 6 on stress, strain and elastic modulus components 
indicate normal directions 1, 2 and 3 and shear directions 12, 13 and 23 
respectively. 
 Elastic material coefficients at T = 20°C and u = 20 % in MPa were set as 
(estimated from data in Wood Handbook (1999)): E1 = 424.8, E2 = 249.4, E3
= 11390, E4 = G12 = 34.17, E5 = G13 = 729.0, E6 = G23 = 694.8. The variations 
with T and u for all E and G components were brought about via the linear 
functions fi and gEi, as Ei(T,u) = Ei(T = 20°C, u = 20 %)·fi(T)·gEi(u) for i = 
1,2,….6. The gradients of the linear functions fi were for i = 3 

CT
f 100233.03  and for the other components (i = 1,2,4,5,6), 

CT
fi 1011.0 . The gradients of the linear functions gEi were for u < (ufsp-

0.04) and i = 3 7344.03

u
gE  and for

u < (ufsp-0.04) and i = 1,2,4,5,6 67.4
u

gEi . The gradients of the linear 

functions gEi were zero for all components, i.e. gEi = gEi(u = ufsp-0.04) for u > 
(ufsp-0.04). The fibre saturation point was set as ufsp = 0.3298-0.001·T  (T in 
°C). Poissons ratios were set as constants, 12 = 0.418, 13 = 0.00707, 23 = 
0.00521. Symmetry gave for i,j = 1,2,3 that ij/Ei = ji/Ej. Constant moisture 
expansion coefficients were set as 1 = 0.1367, 2 = 0.2267, 3 = 0 for u < 
ufsp. For u > ufsp there was no moisture expansion. 
 1D ultimate stresses at T = 20°C and u = 20 % in MPa were set as 
(estimated from Wood Handbook (1999) and Siimes (1967)): 1u = 4.6, 2u = 
4.6, 3u = 60.,  12u = 1.66,  13u = 7.2, 23u = 7.2.   
Variations with T and u were brought about via the linear functions fi (the
same functions as shown above) and g i for all and  components,  

i(T,u) = i(T = 20°C, u = 20 %)·fi(T)·g i(u) where the gradients 

for u < (ufsp-0.04) and i = 3 were 917.23

u
g

 and for u < (ufsp-0.04) and 

i = 1,2,4,5,6 were 67.4
u

g i . For u > (ufsp-0.04) then the gradients of g i

were zero, i.e. g i = g i(u = ufsp-0.04) for all components. 



 1D yield stresses in tension and shear were obtained from the 1D ultimate 
stresses shown above as isd = S iu for i = 1,2,….6. 0 < S < 1 was the yield 
stress factor. 1D yield stresses in compression for the normal stress 
components were assumed to be isc = isd/2 for i = 1,2,3. 
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