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Abstract
Tracing material through the forestry supply chain is a relatively untapped source for process and
product improvements. Since the supply chain handles large quantities at high speeds and has a
diverging flow and several different subprocesses and people involved along the way, traceability
rapidly becomes very complex. The papers presented in this thesis have focused on tracing wood
material by means of the fingerprint approach. The fingerprint approach rests on the foundation that
each piece of wood is a unique individual with unique features and that it is possible to identify and
connect individual pieces in the supply chain in the same way that human beings can be identified by
the use of their fingerprints.

The results from Paper I show the importance of preserving the shape of the log and handling bark
assessment at an individual level when trying to connect logs between the log-sorting station and saw
intake using their 3-D outer shape.

Paper II and Paper III show very encouraging results in connecting sawn timber to the log they were
sawn from by using 3-D and x-ray data for the logs and surface scanning for the sawn timber. The
results show that over 95% of the sawn timber could be connected to the correct log.

Keywords: Fingerprint, Traceability, Log sorting, Green sorting, X-ray log scanner, 3-D scanning,
Surface scanning
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Introduction
Traceability can be defined in many different ways. Töyrylä (1999) defines traceability as follows:
“Traceability is the ability to preserve and access the identity and attributes of a physical supply
chain’s objects.” The ability to identify and connect a specific manufactured object between positions
in the supply chain brings an abundance of opportunities when it comes to controlling the quality of
that object and the process that produced it.

An issue of growing interest for today’s sawmills is the utilization of the raw material, i.e., producing
the most suitable product from each specific log. If this can be achieved, there is a major benefit to be
gained when the production of products that don’t meet quality requirements can be reduced, along
with the loss in revenue that these products bring. In order to obtain knowledge about the relationship
between the raw material and the sawn product, one needs individually associated data between the
two.

With individually associated data, it is subsequently possible to build sorting models in which the
inner and outer characteristics of the raw material can be connected to a specific quality and/or volume
yield of the sawn product. Traditionally, this connected data has been the product of test sawings in
which logs have been manually marked and then tracked and recorded from the harvester or the
sawmill’s log sorting through the green sorting or trimming station. This is, however, a time- and
money-consuming task, which suggests that an automated technique for achieving the individually
associated data would be well worthwhile.

Modern sawmills often have sophisticated measurement equipment, such as x-ray (Anon. 2008d) and
3-D scanning (Anon. 2008c, Anon. 2008e) for logs and surface scanning (Anon. 2008a) for sawn
timber, that generates large quantities of data at an individual level. These data are collected at certain
points along the production chain, but are unfortunately almost exclusively used as a means to control
the production process close to the measurement point. Most of the generated data for a specific piece
of wood are therefore discarded after the piece has moved past the measurement point. The challenge
is therefore not to generate data, but to connect the generated data to individual pieces. If the data for
each specific piece were to be collected and stored in a database, the final product could then “be
considered as an information intensive product,” (Uusijärvi 2003) and the database could be used for
online process control. If the purpose of the traceability is offline process control, only a partial
amount of the total flow needs to be tracked, which would require a less complex and expensive
system compared to an online system. An online system might therefore be overkill, depending on the
purpose. In order to be cost efficient, it must be proven that a system where every piece is traced gives
large benefits. For strength-grading purposes, Brännström et al. (2007) could not find such benefits
from the traceability-based data. On the other hand, it is shown that there is a large potential for
process optimization in using data that can be collected by a system for tracing a partial amount of the
flow (Broman et al. 2007).

Since sawmills have a diverging flow, and modern sawmills have high production speed, the tracing
and storing of data is not well suited for manual labor. A better alternative for handling the tracing and
tracking is some form of automated identification (McFarlane and Sheffi 2002). There are a number of
alternative methods for practically making the connection between measurement data and the
individual piece of wood. Many of these alternatives are based on some form of marking/reading
technique. Two well-known methods are barcode identification (Palmer 1995) and radio frequency
identification (RFID) (Finkenzeller 2003). Barcode identification is a noncontact method used in
almost every supermarket checkout counter in which the bars in the code are optically read by a laser



scanner. RFID is also a noncontact method, wherein an antenna picks up the RFID tag’s unique
identification number when it enters the antenna’s reading range. For forestry traceability applications,
RFID is probably better suited due to the fact that the tags can be read without an optical scan, thus
making the dirt and handling involved in logging almost without influence on the reading result, as
opposed to reading barcode identification under the same circumstances. The drawback is the price for
the RFID tags. A sawmill that produces 150,000 m3 of sawn wood and has an average log volume of
0.18 m3 handles approximately 1.8 million logs annually. The price for RFID tags is approximately 1–
2 ($0.75–$1.50) per tag (Uusijärvi 2003). If every log is to be tagged, the annual cost for tags alone
will then be millions of dollars.

An alternative and more cost-effective way of identifying individual pieces of wood is to use the
already existing measurement data and make identification by means of the fingerprint approach
(Chiorescu 2003). The fingerprint approach rests on the foundation that each piece of wood is a unique
individual with unique features. These can be the piece’s outer as well as inner features. If one could
measure these individual features accurately enough, it would then be possible to identify individual
pieces in the production chain in the same way that human beings can be identified by the use of their
fingerprints.

The objective of this research is to show the so far rather hidden possibilities that lie in being able to
connect individual pieces in the forestry supply chain. The three papers presented here focus on
making further advancement in the development of the fingerprint approach towards a traceability
concept in the forestry supply chain. All results from the three papers are derived and thus limited to
Scots pine that has been harvested in northern Sweden.

Paper I is a spinoff from earlier results by Chiorescu (2003) in tracing logs between the sawmill’s log-
sorting station and saw intake using the log’s 3-D outer shape. Chiorescu found that bark had a very
negative effect on the fingerprint recognition rate. The aim of Paper I was therefore to investigate if a
more individualized bark assessment based on the tracheid effect could improve the recognition rate
between the log-sorting station and the saw intake.

Paper II and Paper III describe a new fingerprint-approach method in which the possibility was
investigated of connecting logs from the log-sorting station to sawn center yield planks from the
green-sorting station using 3-D and x-ray data for the logs and surface-scanning data for the planks.
Paper II is an initial study, and Paper III is an extended study to verify and enhance the results found
in Paper II.



Material & Methods

Paper I:
This study was hosted by a mid-size sawmill situated in northern Sweden with an annual production of
approximately 150 000 m3 of sawn timber. The sawmill handles both Scots pine (Pinus sylvestris) and
Norway spruce (Picea abies (L.) Karst.). Scots pine was chosen in this study since the species has
three different types of bark along the stem, which makes bark assessment more problematic compared
to Norway spruce, which only has one type of bark.

The data collection involved three of the stations at the sawmill. These were, sequentially, the log-
sorting station, a combined debarker/butt-end reducer and the saw intake. The butt-end reduction was
performed by a knifed rotating ring with fixed diameter (see Figure 1). The diameter of the ring used
in this study was 320 mm.

Figure 1: Knifed ring for butt-end reduction

The study involved two groups with 50 randomly chosen logs in each group. The first group consisted
of small-sized logs with a top diameter in the range of 148–154 mm. The second group consisted of
larger-sized logs with a top diameter in the range of 253–265 mm. The second group was chosen
because the diameter class in the 253–265-mm range is the largest diameter class on which the 320-
mm butt-end reducer ring is used in normal production. Most of the logs in the larger-sized group were
therefore greatly affected and consequently shape-changed after they had gone through the butt-end
reducer (see Figure 2).



Figure 2: The same log before and after butt-end reduction

The measurement equipment used to generate and collect the measurement data was two identical
Sawco 3-D scanners (Anon. 2008e) that were installed at both the log-sorting station and the saw
intake. These scanners are used in the sawmill’s normal production. The log sorting station scanner
was equipped with Sawco’s ProBark application that uses the tracheid effect to automatically assess
whether the measured surface is bark or clear wood and then uses this information to calculate bark
thickness and perform bark compensation. Figure 3 shows the difference in how the laser line is
spread in bark and in clear wood.

Figure: 3: Log photographed with flash (left) and without flash (right)

The recording of raw data was done with the automatic bark assessment (ABA) both active and
inactive. When ABA was inactive, the raw data files were recorded with the bark present in all cross
sections. When ABA was active, each cross section in the raw data files was compensated with the



individual log’s calculated bark thickness. With ABA active, one could think of the logs as “virtually
debarked”.

After the log data had been collected at the saw intake and at the log sorting station with ABA both
active and inactive, the data was analyzed using MatLab (Anon. 2008b). Eleven descriptive
measurements were calculated for each log (Table 1) using the raw data from both the log sorting
station and the saw intake.

Table 1: Measurements calculated for each log

Variables Description

Length (Len) Distance from the log’s top to butt end (mm)

Physical Volume (PhV) The log’s physical volume (dm3)

Top Diameter (ToD) The log’s top-end diameter (mm)

Middle Diameter (MiD) The log’s middle diameter (mm)

Butt Diameter (BuD) The log’s butt-end diameter (mm)

Total Taper (ToT) The absolute value of the change in diameter per meter of log length
from the top end to a point measured one meter from the butt end
(mm/m)

Top Taper (TpT) The absolute value of the change in diameter from the top end of the
log to a point measured one meter from the top end (mm/m)

Butt Taper (BuT) The absolute value of the change in diameter from the butt end of the
log to a point measured one meter from the butt end (mm/m)

Bow Height (BoH) The maximum distance between the log’s curvature and a straight line
connecting the center of the log’s end surfaces (mm)

Bow Radius (BoR) The radius of a circle fitting the log’s length and bow height (m)

Bow Position (BoP) The distance from the log’s top end to the point of maximum bow
height (mm)

The measurements from the log-sorting station data were calculated with no bark compensation, bark
compensation with traditional bark functions (Zacco 1974) and bark compensation with ABA. The
fingerprint matching was done by means of score values from multivariate principal components
(Wold et al. 1987; Eriksson et al. 2001). This method is well suited for handling data that might
contain some noise and has shown good results in previous studies (Chiorescu 2003).

The matching was done by taking one log at a time from the saw intake and comparing it, one by one,
to all logs from the log-sorting station. The actual comparison was done by using the score values and



calculating a Euclidian distance value. For the log from the log sorting station that showed the smallest
Euclidian distance value for a specific log from the saw intake, a positive identification was
considered to have been established between the two places.

After the first findings, the raw data files from the large-size group were virtually crosscut in the butt
end in an attempt to enhance the results and handle the problem with the butt-end reducer. Matching
was, after the crosscutting, performed on the remaining part of the log.

Paper II & Paper III:
These studies were hosted by a large-size sawmill situated in northern Sweden with an annual
production of approximately 400 000 m3 of sawn timber. The sawmill handles only Scots pine (Pinus
sylvestris), which was thus the only material used in the two papers. Data for the study were collected
from a total of 435 logs with top diameters in the interval 153–321 mm. All logs were sawn by 2-ex
patterns into 870 pieces of center-yield planks of various dimensions (see Table 2).

Table 2: The Scots pine material used in the study

Group
Logs Planks

Quantity Top diameter (mm) Quantity Thickness (mm) Width (mm)

1 70 153–187 140 50 100

2 70 174–213 140 50 125

3 70 193–229 140 50 150

4 40 208–260 80 63 150

5 75 225–277 150 63 175

6 110 253–321 220 63 200

All data used in the studies were collected by the industrial measurement systems that are used in the
sawmill’s normal production. The first point of data collection was the sawmill’s log-sorting station
where data from the logs were collected with a one-directional x-ray log scanner from Rema Control
AB (Anon. 2008d) in combination with a 3-D optical scanner from MPM Engineering Ltd. (Anon.
2008c). The data extracted from these systems were the total length of the logs according to the 3-D
scanner and the position and length of the whorls in the logs according to the x-ray log scanner. The
second point of data collection was a cross-fed Finscan Boardmaster surface-scanning system (Anon.
2008a) situated at the sawmill’s green sorting station. The total length and the positions of surface
knots were recorded for each of the sawn planks.

The analysis of the collected data was performed using MatLab. Log groups one and two were used
together in Paper II for analysis and construction of the fingerprint-matching algorithm. Log groups
three, four, five and six were incorporated in Paper III to verify the results. Paper III also focused on
further developing the matching algorithm.



The first step in the data analysis in Paper II was to investigate the correlation between the total length
measurements from the log-sorting and green-sorting stations. This was done in order to create a
length filter for the matching algorithm. The length filter was made to exclude all logs from the
matching procedure that had a length that could not realistically belong to the plank being compared.
The matching algorithm was designed to work iteratively by taking one plank at a time and comparing
its summarized surface-knot positions with the positions of knot whorls for each log that had passed
the length filter (see Figures 4 and 5).

Figure 4: Lengthwise positions of knot whorls in a log.

Figure 5: Lengthwise positions of surface knots on a plank. The plank’s four faces are summarized
(bottom).

The length-filtered log that showed the highest correlation in knot positioning to the plank was
considered a positive match. In Paper III, the algorithm was improved and extended with a minimum
difference value filter in order to improve the certainty in the matching procedure. The minimum-
difference-value filter made it possible to exclude planks from the matching procedure if they were at
risk of being matched to the incorrect log.



Results

Paper I
The results from the matching procedure are presented in Table 3. The figures presented for the large-
size logs are before virtual crosscutting of the butt end (on the left) and after virtual crosscutting (on
the right).

Table 3: Fingerprint recognition rate with different bark compensation methods

Bark compensation Recognition rate (%) small-size logs Recognition rate (%) large-size logs

Before virtual
crosscut

After virtual
crosscut

No compensation 77.6 54.0 66.0

Bark functions 83.7 62.0 70.0

ABA 88.4 63.3 76.7

The results show that the recognition rate can be improved with more sophisticated bark assessment
and that the results for the large-size logs can be improved by performing a virtual crosscut.

Paper II & Paper III
The results from the matching procedure in Paper II are presented in Table 4.

Table 4: Fingerprint recognition rate, Paper II

Thickness Width Number of
ingoing planks

Number of correctly
matched planks

Percentage of correctly
matched planks

50 100/125 280 259 92.5



The results from the matching procedure in Paper III are presented in Table 5.

Table 5: Fingerprint recognition rate, Paper III

Thickness Width Number of
ingoing planks

Number of correctly
matched planks

Percentage of correctly
matched planks

50 100/125 280 268 95.7

50 150 140 136 97.1

63 150 80 77 96.3

63 175 150 146 97.3

63 200 220 212 96.4

Table 5 shows that the improved matching algorithm performs better than the original (Table 4) and
that the results are consistent regardless the size of the logs and sawn lumber.

Figure 6 shows how the certainty in the matching procedure can be improved by using a minimum-
difference-value filter.

Figure 6: Illustration of how an increased number of correct matches can be achieved with the minimum
difference value.



Figure 7: Illustration of how an increasing number of ingoing planks are excluded from the final matching
when using a minimum difference value.

If, for example, the minimum difference value is set to 0.06, the recognition rate increases to 100% for
all dimensions, while 5%–20% of the ingoing planks are excluded from the matching procedure; i.e.,
100% of the remaining planks are correctly matched.



Discussion

Paper I
Based on these results, ABA appears to be a better alternative than traditional bark functions for
handling bark compensation on an individual level. This is also in line with what could be expected,
since ABA was introduced in order to handle bark compensation on an individual level, as compared
with bark functions that are sufficient for handling bark compensation on a group level, but that lack
precision to handle it on an individual level.

The virtual crosscutting of the large-size logs did improve the results, but not to the levels that were
found in the small-size group. This is probably due to the fact that the virtual crosscutting eliminated
some of the natural variation found within the logs, but also due to the fact that log classes with large-
size logs don’t have the same mixture of butt, middle and top logs that can be found in log classes with
smaller-size logs.

The results from this study show that the bark assessment and the integrity of the log’s shape are
important factors when trying to connect logs with the fingerprint method presented here. This study
does, however, need to be validated with a larger test set of independent material. The figures
presented here should therefore be viewed in relation to each other rather than as absolute values.

Paper II & Paper III
The results from this study are very encouraging for further development of this fingerprint-tracing
method. The results indicate that this method of tracing could be a very cost-effective way to collect
and connect data, as opposed to the traditional test sawings, which involve a lot of manual labor in the
data collection. The connected data are essential for following up whether changes in process
parameters, such as log class limits or sorting towards a certain quality, have had the desired effect,
and if not, finding out which specific logs have failed to meet the requirements. The individually
associated data could also be used to form the foundation from which to build statistical log-sorting
models, since one gets the connection between the logs’ inner and outer properties and the sawn
planks’ quality and volume yield.

Papers II and III have only dealt sawn center-yield planks from pine logs. It is therefore unclear how
this method would handle sideboards and sawn lumber from other species such as, for example,
Norway spruce. Since sideboards are cut closer to the surface of the log, this could be a potential
difficulty, because the knot whorls in the log don’t necessarily reach that far, especially in large butt
logs. Tracing Norway spruce could also be a challenge, since a lot of minor knots grow in between the
main annual whorls, thus making it more difficult to establish position and stretch of knots and knot
whorls.

The algorithm can in its present state only handle the case wherein the logs and the sawn timber are of
approximately equal length. The algorithm would therefore need some further development in order to
handle sawn timber that has been crosscut or taper sawn.





Future research
The results, especially from Paper II and Paper III, are very encouraging for further development. An
interesting idea would be to use the method in Papers II and III and add a step in the algorithm that
would connect the planks that have been cut from the same log before connecting the planks to the
log. By doing this, one would get sawn timber surface information from eight sides (2-ex pattern)
instead of four.

It would also be interesting to investigate the possibility of using the method from Papers II and III for
tracing sawn center yield from 3-ex and 4-ex patterns as well as sideboards and other species of wood.
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Fingerprint traceability of logs using
the outer shape and the tracheid effect

Jens Flodin
Johan Oja

Anders Grönlund

Abstract
Traceability in the sawmilling industry is a concept that, among other benefits, could be used to more effectively control and

pinpoint errors in the production process. The fingerprint approach is a traceability concept that in earlier studies has shown good
potential for tracing logs between the log sorting station and the saw intake. In these studies, bark has been identified as a large
source of measurement inaccuracy. This study was set out to investigate whether the fingerprint recognition rate could be
improved when compensating for bark with traditional bark functions or a new automatic bark assessment based on the tracheid
effect. The results show that the fingerprint recognition rate can be improved by using more sophisticated bark compensation.
Compared to no bark compensation, improvements can be made by using the existing bark functions, and even further improve-
ments can be made by using automatic bark assessment based on the tracheid effect. The results further show that the butt-end
reducer between the log sorting station and the saw intake has a very negative effect on the fingerprint recognition rate, but that
significant improvements in the recognition rate can be achieved by excluding the section of the log’s butt end that is affected by
the butt-end reduction.

Traceability can be defined in many different ways.
Töyrylä (1999) defines traceability as follows: “Traceability
is the ability to preserve and access the identity and attributes
of a physical supply chain’s objects.” The ability to attach and
access the history of a specific manufactured object brings an
abundance of opportunities when it comes to controlling the
quality of that object and the process that produced it. A good
example is the possibility to investigate circumstances sur-
rounding rework and costumer return of faulty products. The
ability to trace a product’s history makes it possible to isolate
and correct errors in the manufacturing process, hence pre-
venting the same errors from occurring again (Wall 1995,
Töyrylä 1999). For the same reason, many benefits may ac-
crue as a result of being able to trace products within the wood
production industry (Kozak and Maness 2003).

A large-scale issue that is often brought up is the problem
with illegal logging. This problem has a negative effect on
both the environment and the economy of the affected coun-
tries (Dykstra et al. 2003). Traceability would, from this view-
point, be a way to ensure that harvested logs and their final
products originate from a certified harvest site. Since the
wood production chain has a diverging flow with a number of
people and companies involved in various steps of the han-
dling (Uusijärvi 2000), traceability on a smaller scale could be
viewed as a tool for the sawmilling industry to increase

knowledge and understanding of factors that influence prod-
uct quality and the manufacturing process.

Modern forestry and sawmilling companies often have so-
phisticated measurement equipment that generates large
quantities of data at an individual level. These data are col-
lected at certain points along the production chain but are un-
fortunately almost exclusively used as a means to control the
production process close to the measurement point. Most of
the generated data for a specific piece of wood are therefore
discarded after the piece has moved past the measurement
point. If the data for each specific piece were to be collected
and stored in a database, the final product could then “be con-
sidered as an information intensive product” (Uusijärvi 2003).
The challenge is therefore not to generate data, but to connect
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the generated data to each individual piece of wood. The re-
connected data would make it possible to investigate and ana-
lyze large as well as small sections of the production chain. A
good example is the connection between the diameter classes
for logs in the log sorting station and the volume recovery of
sawn planks and boards. Without reconnection of data, one is
reduced to comparing physical volume for a larger group of
logs with the physical volume of their planks and boards. With
traceability, i.e., reconnection of data, one is given the oppor-
tunity not only to analyze and find the individual logs in the
group that yield high volume recovery, but perhaps even more
important, to find the logs in the group that yield low volume
recovery for a specific sawing pattern. Being able to make this
distinction then makes it possible to adjust process parameters
such as log class limits or sawing patterns for an overall higher
volume recovery.

Since sawmills have a diverging flow, and modern sawmills
have high production speed, the tracing and storing of data are
not well suited for manual labor. A better alternative for han-
dling the tracing and tracking is some form of automated iden-
tification (McFarlane and Sheffi 2002). There are a number of
alternative methods for making the connection between mea-
surement data and the individual piece of wood. Many of
these alternatives are based on some form of marking/reading
technique. Two well-known methods are barcode identifica-
tion and radio frequency identification (RFID). Barcode iden-
tification is a noncontact method used in almost every super-
market checkout counter, where the bars in the code are opti-
cally read by a laser scanner. RFID is also a noncontact
method wherein an antenna picks up the RFID tag’s unique
identification number when it enters the antenna’s reading
range (Finkenzeller 2003). For forestry traceability applica-
tions, RFID is probably better suited due to the fact that the
tags can be read without an optical scan, thus making the dirt
and handling involved in logging almost noninfluential on the
reading result, as opposed to reading barcode identification
under the same circumstances. The drawback with RFID is
the price for the RFID tags. A sawmill that produces 150,000
m3 of sawn wood and has an average log volume of 0.18 m3

handles approximately 1.8 million logs annually. The price
for RFID tags is approximately 1 to 2 € ($0.75 to $1.50) per
tag (Uusijärvi 2003). If every log is to be tagged, the annual
cost for tags alone will then be millions of dollars. An alter-
native way of identifying individual logs is to use the already
existing measurement data and make identification by means
of the fingerprint approach (Chiorescu 2003).

The fingerprint approach rests on the foundation that each
log that enters a sawmill has unique individual features. This
can be the log’s outer features, such as diameter, length, taper,
crook and ovality, as well as inner features, such as knot vol-
ume, distance between knot whorls, heartwood/sapwood con-
tent and so on. If one could measure these individual features
accurately enough, it would then be possible to separate indi-
vidual logs in the same way that human beings can be sepa-
rated by the use of their fingerprints. Hence measurement ac-
curacy is the key to being able to uniquely define and recog-
nize a log amongst others with the fingerprint approach
(Chiorescu 2003). In the research, Chiorescu also identified
bark as being a factor that has a negative effect on measure-
ment accuracy and consequently the fingerprint recognition
rate. The results showed that 3-D-scanner recognition rate
dropped from 89 percent to 57 percent between log sorting

station and saw intake when the log sorting measurements
were made on non-debarked, rather than debarked, logs.
Swedish log sorting stations use bark functions to compensate
for the bark thickness. The log’s on-bark diameter is used in a
linear regression model to calculate double bark thickness,
which is then subtracted from the on-bark diameter to get the
under-bark diameter (Zacco 1974). This method for bark de-
duction is, however, more suited for pricing and scaling pur-
poses on groups of logs than for defining bark deduction on an
individual level. Both the variation in bark thickness and the
amount of missing bark will lead to errors in the diameter
compensation.

A recent 3-D-scanner application that handles the bark is-
sue on an individual level uses the tracheid effect to estimate
bark thickness and missing bark. The tracheid effect is the
physical phenomenon of laser light’s ability to spread more
along than across the wood fiber (Nyström 2002). The 3-D-
scanner application for bark assessment uses the tracheid ef-
fect to determine whether the scanned surface is clearwood or
bark. This is made possible by the fact that bark’s ability to
spread laser light is very poor compared to that of wood. By
calculations based on the spread of the laser light, the appli-
cation is able to virtually debark the measured log and make
geometrical calculations “under bark” (Forslund 2000, Flodin
2007).

The purpose of this study is to investigate whether it is pos-
sible to increase the fingerprint recognition rate between log
sorting station and saw intake by using traditional bark func-
tions or the tracheid effect to compensate for the previously
shown negative influence of bark.

Materials and methods
The sawmill that hosted the collection of data are located in

the coastal part of northern Sweden. The sawmill is a midsize
mill with an annual production of approximately 150,000 m3

of sawn timber. The mill uses fixed sawing patterns that are
applied to logs that have been sorted into diameter classes.
The data collection involved three of the stations at the saw-
mill. These were, sequentially, a log sorting station with a 3-D
scanner, a combined debarker/butt-end reducer and a saw in-
take with a 3-D scanner. The butt-end reduction was pre-
formed by a knifed rotating ring with fixed diameter (see Fig.
1). The diameter of the ring used in this study was 320 mm.

Figure 1. — Knifed ring for butt-end reduction.
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The study involved two groups with 50 randomly chosen
Scots pine (Pinus sylvestris) logs in each group. The first
group consisted of small-sized logs with a top diameter in the
range of 148 to 154 mm. The second group consisted of larger
sized logs with a top diameter in the range of 253 to 265 mm.
Every log in each group was marked in both butt and top end
with an ID number from 1 to 50. The second group was chosen
because the diameter class in the 253 to 265-mm range is the
largest diameter class to use the 320-mm butt-end reducer ring
in normal production. Most of the logs in the larger sized
group where therefore greatly affected and consequently
shape-changed after they had gone through the butt-end re-
ducer (see Fig. 2).

The measurement equipment used to generate the measure-
ment data were two identical Sawco 3D scanners that were
installed at both the log sorting station and the saw intake. The
scanner has three measurement heads that use laser line trian-
gulation to create cross sections of the log every 10 to 20 mm
while it is fed through the scanner. The scanned cross sections
are then stacked by the scanners software to recreate the log’s
outer shape (see Fig. 3).

The log sorting station scanner was equipped with Sawco’s
ProBark application that uses the tracheid effect to automati-
cally assess whether the measured surface is bark or clear-
wood. Figure 4 shows the difference in how the laser line is
spread in bark and in clearwood. The recording of raw data
can be done with the automatic bark assessment (ABA) active
or inactive. If ABA is inactive, the raw data files are recorded
with the bark present in all cross sections. If ABA is active,
each cross section in the raw data files is compensated with
the individual log’s calculated bark thickness. With ABA ac-
tive, one could think of the logs as “virtually debarked”.

The log sorting station data were collected in the middle of
October. The logs where then stored until the saw intake data
were collected in late November. There was no influence from
snow on the measurement results in either of the collections.
In the October collection, no snow had yet fallen, and the
snow present at the time of the November collection was re-
moved in the debarking of the logs. The data collection with

the log sorting station’s 3-D scanner involved four runs for
each group, three times with ABA active and once with ABA
inactive. The data collection at the saw intake involved one
run through the 3-D scanner for each group. No repeated runs
of the logs were possible at the saw intake due to the machin-
ery set-up. During each of the runs, the sequence of the logs
ID numbers was noted so that each raw data file could be
matched to the corresponding log.

Data analysis
MatLab® 7.0 (The MathWorks 2007) was used for calcu-

lation and analysis of the raw data files. The first step was to
calculate geometry measurements that define a log. The com-
ponents needed to calculate the log’s geometrical measure-
ments were found in the raw data files which hold the infor-
mation about the stacked cross sections illustrated in Figure
3. The required components that were extracted from the files
were length coordinates for the cross sections, spatial coordi-
nates for the cross section’s center of geometry, the area of the
cross sections and the average diameter of the cross sections.
The measurements that were calculated are shown in Table 1.
When all 11 measurement values had been calculated, a mea-
surement accuracy and repeatability analysis was conducted
for both of the log groups using the three runs with ABA ac-
tive from the log sorting station together with the run from the
saw intake. The aim of the analysis was to establish and rank
the reliability of the 11 variables. Each variable was evaluated
by two calculated values.

The first value was for internal variation which describes
the span of the measured values that the variables had as-
sumed. Internal variation was calculated in two steps.

1. Calculate the standard deviations (SDs) for the value
spans that the variables had assumed in the three log-
sorting runs.

2. Set internal variation for each variable as the average
value of the three SDs calculated in step one.

The second value was for the measurement difference
which describes the accuracy in repeating the logs measure-
ments between log sorting station and saw intake. Measure-
ment difference was calculated in three steps.

1. Calculate absolute value difference between the three
log sorting measurements and saw intake measurement.

2. Calculate the SDs of the absolute values obtained from
step one.

3. Set measurement difference as the average value of the
SDs calculated in step two.

The variables’ reliability could then be determined as the
internal variation divided by the measurement difference. The

Figure 2. — The same log before and after butt-end reduction.

Figure 3. — Stacked cross sections for recreation of a log’s
outer shape.
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higher the quotient value was, the more reliable the variable
could be considered. Table 2 shows the ranking of the vari-
ables according to this quotient value.

The fingerprint matching was done by means of multivari-
ate principal components. This method had shown good re-
sults in previous studies (Chiorescu 2003). The method is a
way to describe a dataset using underlying latent variables,
i.e., principal components. The use of principal components is
well suited to finding relationships between variables, reduc-
ing noise and allowing a dataset to be more simply described
by fewer variables (Wold et al. 1987, Eriksson et al. 2001). If

one imagines measured data as a
point swarm in a multidimensional
space where each point is an obser-
vation, principal components will
align themselves orthogonally to ac-
count for as much of the variance in
the point swarm as possible. The
first component will account for the
largest variation in the observations,
the second component for the sec-
ond largest variation and so on. Con-
sequently, a linear combination of
the first two or three components
will not end up exactly at an original
observation but will come close
enough to make a good estimation.
The original data matrix (X) can be
projected onto the principal compo-
nents to obtain the so called princi-
pal component scores (T). The score
values for the observations are deter-
mined by the original data (X) and
the principal component loadings
(P). The relationship between origi-
nal data and principal component
data can be described as:

X = T � P + E = �
i=1

n

ti � p�i + E

E is the residual matrix, i.e., the
variation in the data that is not ex-
plained by the linear combination of

principal components, and n is the number of components in-
cluded in the model. The values in the residual matrix E will
decrease for each added principal component and eventually
reach zero when the number of components equals the num-
ber of original variables. Before principal components are cal-
culated, the data are usually centered and scaled to unit vari-
ance in order to allow each variable to equally influence the
observations projected score values. In this study, the vari-
ables were centered and scaled to have a mean value equal to
zero and a SD equal to one.

If there is preexisting knowledge about the variables’ reli-
ability they can be further scaled after the initial unit variance
scaling. One could scale up variables that are more reliable
and likewise scale down variables that are less reliable in their
influence on the results. If a variable is scaled up, the previ-
ously mentioned point swarm of observations will be
stretched in the direction of that variable. The stretch will also
affect the orientation of the principal components in the
swarm, giving the stretched variable a higher loading value
and subsequently more influence on the projections that gives
the score values. In this study, the upscaling was done by mul-
tiplying each variable value with a corresponding scaling fac-
tor. The result will be that a unit variance variable multiplied
with a scaling factor of, for example, two will get its SD
changed from one into two.

The multivariate matching procedure was done with an al-
gorithm described at the end of the data analysis section. The
algorithm iterated a scaling vector containing the 11 scaling
factors, i.e., SDs, to be used on the variables. The iterative

Table 1. — Measurements calculated for each log.

Length (Len) Distance from the log’s top to butt end (mm)

Physical Volume (PhV) The log’s physical volume (dm3)

Top Diameter (ToD) The log’s top-end diameter (mm)

Middle Diameter (MiD) The log’s middle diameter (mm)

Butt Diameter (BuD) The log’s butt-end diameter (mm)

Total Taper (ToT) The absolute value of the change in diameter per meter of log length from the
top end to a point measured one meter from the butt end (mm/m)

Top Taper (TpT) The absolute value of the change in diameter from the top end of the log to a
point measured one meter from the top end (mm/m)

Butt Taper (BuT) The absolute value of the change in diameter from the butt end of the log to a
point measured one meter from the butt end (mm/m)

Bow Height (BoH) The maximum distance between the log’s curvature and a straight line
connecting the center of the log’s end surfaces (mm)

Bow Radius (BoR) The radius of a circle fitting the log’s length and bow height (m)

Bow Position (BoP) The distance from the log’s top end to the point of maximum bow height (mm)

Table 2. — Variable reliability (a higher quotient value sug-
gests that the related variable can be more reliably used in the
multivariate matching procedure).

Small-size logs Large-size logs

Variable Quotient Variable Quotient

Len 26.9 Len 24.9

PhV 5.4 PhV 4.4

BoH 4.1 ToD 2.2

ToT 3.3 MiD 2.1

BoR 2.8 ToT 1.7

BuT 2.6 TpT 1.4

MiD 2.6 BoR 1.2

ToD 2.3 BuD 1.2

BuD 2.2 BoH 1.2

TpT 1.7 BoP 1.1

BoP 1.6 BuT 1.0

Figure 4. — Log photographed with flash (left) and without flash (right) (Flodin 2007).
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range for each scaling factor was based on the previously
mentioned reliability test of the variables. Table 3 shows the
scaling factors that were used for all logs. To keep the number
of iterations and computer calculation time at a reasonable
level, each scaling factor in the scaling vector was given on
average three different iteration values. For all the variables
except length and physical volume, which had proven most
reliable, the scaling factor range incorporated the value zero
which when used excluded the affected variable from the
matching procedure. This set-up gave the algorithm 157,464
different scaling vector combinations to work through. An ad-
ditional iteration step containing three values of explained
variance was also included in the matching algorithm. These
values were 60, 70, and 80 percent. This step determined the
number of principal components to be included in the matching
procedure, i.e., the number of principal components needed to
explain at least the percentage of variance in the original data
given by the explained variance value. The additional itera-
tion step for explained variance gave the algorithm a total
number of 472,392 iteration steps to work through.

The actual matching for each iteration step was done using
the log sorting station and saw intake score matrices (T) and
then matching logs according to Euclidian distance. Euclidian
distance (ED) is the shortest distance between two observa-
tions and is calculated as follows, where p and q are the score
values for each principal component and n is the number of
principal components:

ED =��
i=1

n

�qi − pi�
2

In this study, score values from the saw intake logs under-
went Euclidian distance calculations one at a time with the
score values of all the 50 logs from the log sorting station.
Matching was then made to the nearest neighbor log with the
shortest Euclidean distance within the 50 log sorting station
logs. The final matching algorithm used in this study followed
the sequence given below.

1. Read log sorting station and saw intake data of calcu-
lated measurements

2. Center and scale both datasets to unit variance
3. Multiply both datasets with the scaling vector
4. Calculate total number of principal components from

the log sorting station data and the corresponding score
and loading matrices

5. Reduce the number of principal components and also
score/loading matrices to satisfy explained variance
threshold value

6. Use reduced loading matrix to calculate score matrix
for saw intake data

7. Calculate Euclidean distance between observations in
score matrices and perform matching to nearest neigh-
bor

8. Calculate and save the percentage of correct matching
9. Iterate explained variance threshold value and go to

step 5
10. Iterate scaling vector and go to step 3

Five matching runs were performed for each group between
saw intake and log sorting station to observe how the bark and
also the butt-end reduction for the large-size logs influenced
the results. That meant one run with no compensation for
bark, one run where bark had been compensated with bark
functions and three runs where bark had been compensated
with the ABA application.

After the first findings, two alternative approaches were
tried on the ABA data to evaluate whether it was possible to
improve the recognition rate for the large-size group. The first
approach was to alter the raw data files from the log sorting
station to mimic the effects of the butt end reducer. The sec-
ond alternative tried was to virtually cross-cut the log’s butt
end and perform matching on the remaining part of the log.
Six different length reductions were tried.

Results
During the handling between the log sorting station and the

saw intake, one of the logs from the small-size group was ac-
cidentally broken in half and therefore left out of the data from
the saw intake. Tables 4, 5, and 6 hold the best results of all
the matching runs that were performed. The overall results
from these tables show that the recognition rate can be im-
proved with more sophisticated bark evaluation, but also that

Table 5. — Fingerprint recognition rate for the large-size logs
with different bark compensation methods.

Bark compensation
Fingerprint

recognition rate
Average

recognition rate

- - - - - - - - - - - - - - - (percent) - - - - - - - - - - - - - - -

No compensation 54.0 54.0

Bark functions 62.0 62.0

ABA 1 60.0

63.3ABA 2 60.0

ABA 3 70.0

Table 3. — Iterative range for the scaling factors used on the
different variables.

Variable Scaling factor

Len 3 to 5

PhV 1 to 4

ToD 0 to 2

MiD 0 to 2

BuD 0 to 2

ToT 0 to 2

TpT 0 to 2

BuT 0 to 2

BoH 0 to 2

BoR 0 to 2

BoP 0 to 1

Table 4. — Fingerprint recognition rate for small-size logs with
different bark compensation methods.

Bark compensation
Fingerprint

recognition rate
Average

recognition rate

- - - - - - - - - - - - - - - (percent) - - - - - - - - - - - - - - -

No compensation 77.6 77.6

Bark functions 83.7 83.7

ABA 1 85.7

88.4ABA 2 91.8

ABA 3 87.6
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the bark issue is overshadowed by the effects of the butt-end
reducer for the large-size group.

Noticeable is that there is a more than 20 percent lower rec-
ognition rate within the large-size group in Table 5 compared
to the small-size group in Table 4. This drop is most likely
primarily caused by the shape change that occurred when the
large-size logs passed through the butt-end reducer. Signifi-
cant improvement in recognition rate for the large-size group
could, as Table 6 illustrates, be achieved by excluding a sec-
tion of the log’s butt end. The best recognition rate, 76.7 per-
cent, was achieved using ABA and a length reduction of 750
mm. This, however, still falls behind the ABA recognition
rate of 88.4 percent for the small-size group. The patterns in
Tables 4, 5, and 6 are, on the whole, very similar. They show
the lowest recognition rate for the runs where no compensa-
tion for bark was done. Compensation with traditional bark
functions improves the recognition rate, which is even further
improved when bark compensation is done using ABA. The
attempt to alter the raw data files for the large-size group to
mimic the shape change caused by the butt-end reducer did
not give any significant increase in recognition rate.

Discussion
Based on these results, ABA appears to be a better alterna-

tive than traditional bark functions for handling the bark com-
pensation on an individual level. This is also in line with what
could be expected, since ABA was introduced in order to
handle bark compensation on an individual level, as compared
with bark functions that are sufficient for handling bark com-
pensation on a group level but that lack precision to handle it
on an individual level.

One reason why the large-size group, after length reduction,
didn’t reach the same recognition rate as the small-size group
may be that the virtual cross cutting of the logs eliminates
some of the natural variation that is used to define the logs’
outer shapes. Another reason could be that the large-size
group probably consisted only of butt logs, while the small-
size group was composed of a random mix of butt, middle and
top logs. This makes the total variation in shape more pro-
nounced in the small-size group than in the large-size group.

The scaling factor range in the scaling vector was chosen
with regard to the reliability of the variables and the number of
iterations that the matching algorithm had to work through.
Length was given the highest scaling factor range due to the
fact that it was recognized to be far more reliable than the
other variables. Bow height position, which had shown low
reliability in both groups, was given a smaller range than the
others. Physical volume was given the second highest values

and a larger range, since it was the second most reliable vari-
able in both groups, but at the same time sensitive to the ef-
fects of the butt-end reducer within the large-size group. Ide-
ally, one would have wanted the study to have contained a
larger amount of logs. This would have made it possible to set
aside an independent test set of logs on which the matching
model could have been validated. With a small amount of
logs, there is a risk of over fitting the model so that it works
very well on the training set, but poorly on a test set.

The number of principal components that were included in
the matching procedures in any run didn’t need to exceed
three in order to satisfy the explained variance threshold val-
ues of 60, 70 and 80 percent. This is a good illustration of the
advantage of more than 80 percent of the variance in the 11
original variables being explained by only three new latent
variables, i.e., principal components. Three different thresh-
old values were tried in order to see whether the explained
variance played a large part in the recognition rate. The best
results, in almost each run, came with the highest threshold
value of 80 percent. It might have been interesting to try even
higher threshold values, but with that comes the risk of rapidly
increasing the amount of components and the modeling of
noise.

The matching procedure for both the small- and large-size
group was in this study done by calculating the Euclidean dis-
tance between each log measured at the saw intake to all the
logs measured at the log sorting station. Consequently, a spe-
cific log could get multiple hits, i.e., be matched to several
logs. An alternative approach would have been to remove
matched logs one by one from the log sorting station data in
order to eliminate the risk of multiple hits. However, on mis-
match, this approach will automatically yield more matches
that are incorrect, because the log removed from the log sort-
ing data won’t be available for a correct matching further
down the line. By eliminating multiple hits, one will also
eliminate the alert given that two or more logs have very simi-
lar shape. This alternative approach was therefore considered
less suited for the matching procedure.

Another question raised during the study was whether each
log measured at the saw intake should be matched within the
group it belonged to or matched to both groups containing
both small- and large-size logs. The approach chosen in this
study was to match logs only within the same group. This
approach would probably also be the best solution for a prac-
tical application. A sawmill of the size that hosted this study
holds on average 70,000 to 80,000 logs in storage between the
log sorting station and the saw intake. Each diameter class
includes on average 3,000 to 4,000 logs when the class is run
through the sawing procedure. If matching were to be done
within a specific diameter class instead of the entire storage
between log sorting station and saw intake, it would save a lot
of calculation time needed to perform the matching. The
drawback with this approach is that the matching becomes
sensitive to mistakes; for example, if the logyard tractor by
accident places timber from the wrong diameter class onto the
sawing line.

All in all, the fingerprint approach offers a good potential to
very cost effectively trace large amounts of logs between log
sorting station and saw intake. The compromise is that the
matching between logs is a probability match, rather than a
secure match such as that obtained when using, for example,
RFID. This indicates that the method could be well suited as a

Table 6. — Fingerprint recognition rate for large-size logs with
different length reductions and different bark compensation
methods.

Length reduction No compensation Bark functions Average ABA

(mm) - - - - - - - - - - - - - - - - - - - (percent) - - - - - - - - - - - - - - - - - - -

250 54.0 58.0 63.3

500 56.0 62.0 75.3

750 66.0 70.0 76.7

1000 66.0 72.0 73.3

1250 70.0 68.0 71.3

1500 62.0 62.0 68.7
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tool for process improvements where low-probability
matches and multiple hits could be handled, but less suited as
an origin traceability system, which requires a more secure
match. An interesting idea for future work would be to inves-
tigate the extent to which “twin logs” that the matching algo-
rithm confuses and mismatches actually differ from each
other. If the purpose is process control, and these “twin logs”
yield sawn timber of the same volume and quality, then a cer-
tain degree of confusion might be even more acceptable, con-
sidering the benefits that come with the fingerprint approach
to tracing.

Conclusions
The fingerprint recognition rate can be improved by the use

of more sophisticated bark compensation. Compared to no
compensation, improvements can be made by using the tradi-
tional bark functions, and even further improvements can be
made by using automatic bark assessment based on the tra-
cheid effect. The butt-end reducer between the log sorting sta-
tion and the saw intake has a very negative effect on the fin-
gerprint recognition rate. Significant improvement in finger-
print recognition rate can be achieved by excluding the
section of the log’s butt end that is affected by the butt end
reduction.
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ABSTRACT

Traceability in the sawmilling industry is a concept that could be used to more effectively control the production process
and the utilization of the raw material. The fingerprint approach is a traceability concept that rests on the idea that every
piece of wood is a unique individual with unique properties and hence can be identified and separated if a sufficient
number of these properties are measured accurately enough. This study was hosted by a sawmill in northern Sweden and
was aimed at making the fingerprint connection between logs and the center yield sawn from those logs using length and
knot information. The 140 logs involved in the study were of Scots pine with top diameters spanning the range from 153 to
213 millimeters. The center yield sawn from these logs was of two dimensions. The smaller logs (153–187 mm) were sawn
with a 2 ex pattern to 50 by 100 mm, and the larger logs (174–213 mm) were sawn to 50 by 125 mm with a 2 ex pattern.
The data from the logs were collected at the log sorting station by an industrial one-directional x-ray log scanner in
combination with a 3-D optical scanner. The data from the sawn center yield were collected by an industrial cross-fed
surface scanning system situated in the sawmill’s green sorting station. Both systems are used in the sawmill's normal
continuous production. The results show that over 90% of all planks could be matched to the right log, which bespeaks a
great potential for further development and realization of fingerprint tracing as a tool for process control and process
improvement.

INTRODUCTION

Modern forestry and sawmilling companies often have sophisticated measurement equipment that
generates large quantities of data at an individual level. These data are collected at certain points along
the production chain, but are unfortunately almost exclusively used as a means to control the
production process close to the measurement point. Most of the generated data for a specific piece of
wood is therefore discarded as soon as the piece has moved past the measurement point. If the data for
each specific piece were to be collected and stored in a database, the final product could then “be
considered as an information intensive product” (Uusijärvi 2003). The challenge is therefore not to
generate data, but to connect the generated data to each individual piece of wood. The reconnected
data would make it possible to investigate and analyze both large and small sections of the production
chain. A good example is the connection between the diameter classes for logs in the log sorting
station and the volume recovery of sawn planks and boards. Without reconnection of data, one is
reduced to comparing physical properties for a larger group of logs with the physical properties of their
planks and boards. With traceability, i.e., reconnection of data, one is given the opportunity not only to
analyze and find the individual logs in the group that yield high recovery, but perhaps even more
importantly, to find the logs in the group that yield low recovery for a specific sawing pattern. Being
able to make this distinction then makes it possible to adjust process parameters such as log class
limits or sawing patterns for an overall higher recovery.

Since sawmills have a diverging flow, and modern sawmills have high production speed, the
tracing and storing of data is not well suited for manual labor. A better alternative for handling the
tracing and tracking is some form of automated identification (McFarlane and Sheffi 2002). One way
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of identifying individual pieces of wood is to use the already existing measurement data and make
identification by means of the fingerprint approach (Chiorescu 2003). The fingerprint approach rests
on the foundation that each piece of wood has unique individual features. These can be both outer and
inner features. If these individual features could be measured accurately enough, it would then be
possible to identify individual pieces in the production chain in the same way that human beings can
be identified by the use of their fingerprints. The purpose of this study is to investigate whether the
important individual connection between log and sawn center yield can be made by using the
fingerprint approach based on length and x-ray information from the log sorting station and on length
and surface scanning information from the green sorting station.

MATERIALS AND METHODS

The sawmill that hosted this study is a large-size mill situated in northern Sweden with an annual
production of approximately 400,000 m3 of sawn timber. The sawmill handles only Scots pine (Pinus
sylvestris), which was also the only species included in this study. The 140 logs that were involved in
the study were randomly chosen and had top diameters spanning the range from 153 to 213
millimeters. These logs were all sawn with a 2 ex pattern into two different center yield dimensions.
The smaller logs (153–187 mm) were sawn to 50 by 100 mm, and the larger logs (174–213 mm) were
sawn to 50 by 125 mm, making a total amount of 280 sawn center yield pieces. The sideboards
produced were not included in the study.

The data used in this study were gathered at two points in the production chain from systems
that are used in the sawmill’s daily production. The first point was the sawmill’s log sorting station
where data from the logs were gathered with a one-directional x-ray log scanner from Rema Control
AB in combination with a 3-D optical scanner from MPM Engineering Ltd. The data extracted from
these systems were the log’s total length according to the 3-D scanner and the position and length of
the log’s knot whorls according to the x-ray log scanner. The second point of data gathering was a
Finscan Boardmaster surface scanning system situated at the sawmill’s green sorting station. The total
length and the positions of surface knots were recorded for each of the sawn planks. The order in
which the logs and planks passed the measurement systems was written down manually from the end
surfaces, which had been stamped with identification information (Skog and Oja 2007).

The analysis of the gathered data was performed using MatLab 7.3 (The MathWorks 2007).
The first step in the analysis was to investigate the correlation between the total length measurements
from the log sorting and green sorting stations. This was done by calculating the mean and standard
deviation values for all the logs’ lengths minus their corresponding planks’ lengths. Once the length
correlation was known, an algorithm was constructed to perform fingerprint matching between logs
and planks. The algorithm was designed to work in a three-step sequence. The first and second steps in
the sequence read the data into two matrices, first from the logs and then from the planks. Each row in
the log matrix contained the identification, the total length and the starting position and length of all
knot whorls found in the specific log. The information in the plank matrix was setup in the same way,
with the difference that it contained the lengthwise starting point and length of all surface knots found
on the planks. Due to edge effects in the filter, the x-ray log scanner needs a short distance before it
starts registering information. Therefore, knots that were situated within 200 mm of the top and butt
ends of the planks were disregarded.

The third and final step of the sequence was the actual matching procedure. The algorithm
worked iteratively by taking one plank at a time and comparing its surface knot positions with the
positions of knot whorls in all logs that had passed a length filtering. The length filter only allowed
logs with a total length within a span based on the length correlation mean and standard deviation. The
final matching was then made between the length-filtered log and the actual plank that showed the
highest agreement in knot positioning. When all planks had been iterated, the total percentage of
correct matches was calculated.
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In order to find well-working settings for the algorithm, different values were tested for the log
length filter as well as for the distance over which knots were disregarded at the plank ends. These
values were between 3 and 10 cm for the length filter and between 100 and 400 mm for plank end
disregarding.

RESULTS

Figure 1 and figure 2 show how the agreement in the planks’ surface knots and the logs’ knot whorls
can be used to pair together a certain plank with a certain log.

Figure 1. A correct match shows good agreement between the plank’s surface knot positions (light gray) and the

log’s knot whorl positions (dark gray).
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Figure 2. An incorrect match shows poor agreement between the plank’s surface knot positions (light gray) and the
log’s knot whorl positions (dark gray).

The results from the fingerprint matching are positive, with a total correct matching percentage of
approximately 90%. The length correlation between log sorting and green sorting station gave a mean
value of -1.2 cm and a standard deviation of 1.6 cm. This means that the planks are in general
measured slightly more than one centimeter longer than their corresponding logs and that the correct
log, with very high certainty, is to be found within +/- 5 cm from the planks length minus 1.2 cm. The
testing of different values for the log length filter and plank end disregarding didn’t give any drastic
results on the total percentage of correct matches. The percentage hovered slightly over and under 90%
with the different values.

When basing the settings for the log length filter on the length correlation to +/- 5 cm (with mean
correction) and using the original setting of 200 mm for plank end disregarding, a total of 92.5 % of
the 280 planks were matched to the correct log.

DISCUSSION

With promising results like this, one can look forward to what might lie ahead for this method of
tracing. One interesting spinoff is the ability to follow up if changes in process parameters such as, for
example, log class limits have had the desired impact on the sawn product. Another idea is to use the
fingerprint connected data to develop sorting models for the log sorting station, i.e., finding the outer
and/or inner characteristics of the logs that yield a specific quality and/or volume recovery.

This study was conducted on Scots pine only. It’s therefore hard to say how the fingerprint
tracing approach would work on Norway spruce (Picea abies) which is the other main species of wood
sawn in Sweden. Initially, it is thought that it will probably be more difficult, since Norway spruce
doesn’t have as clearly defined knot whorls as Scots pine because branches also grow in between the
main knot whorls in the living tree. It would, however, be very interesting to investigate the
possibilities of tracing Norway spruce with this method.

CONCLUSIONS
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The results show a high potential for further development and realization of fingerprint tracing
between log sorting and green sorting into a practical application for process control and process
improvement.
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Abstract
Traceability in the sawmilling industry is a concept that, for example, could be used tomore effectively control the production

process and the utilization of rawmaterial. The fingerprint approach is a traceability concept that rests on the principle that every
piece of wood is a unique individual with unique properties and therefore can be identified and separated if a sufficient number
of these properties are measured accurately enough. This study was made with the aim of making the fingerprint connection
between logs and the center yield sawn from those logs using length and knot information. Thematerial used was Scots pine logs
from six different diameter groups sawn with a two-ex sawing pattern into six different dimensions of center-yield planks. The
data from the logs were collected at the log sorting station by an industrial one-directional x-ray log scanner in combination with
a 3-D optical scanner. The data from the sawn center yield were collected by an industrial cross-fed surface scanning system
situated in the sawmill’s green sorting station. The results show that over 95 percent of all planks could be matched to the right
log. This gives a high potential for further development and realization of fingerprint tracing between the log sorting and the
green sorting station into a practical application for process control and process improvement.

Traceability can be defined in many different ways.
Töyrylä (1999) defines traceability as follows: “Traceability
is the ability to preserve and access the identity and attributes
of a physical supply chain’s objects.” The ability to attach and
access the history of a specific manufactured object brings an
abundance of opportunities when it comes to controlling the
quality of that object and the process that produced it. One
example is the ability to ensure that harvested logs and their
final products originate from a certified harvest site (Dykstra
et al. 2003). Another good example is the possibility to inves-
tigate circumstances surrounding rework and customer return
of faulty products. The ability to trace a product’s history
makes it possible to isolate and correct errors in the manufac-
turing process, hence preventing the same errors from occur-
ring again (Wall 1995, Töyrylä 1999). For the same reason,
many benefits may result from being able to trace products
within the wood production industry (Kozak and Maness
2003).

An issue of growing interest for today’s sawmills is the uti-
lization of the raw material, i.e., producing the most suitable

product from each specific log. If this can be achieved, there is
a major benefit to be gained when the production of products
that don’t meet quality requirements can be reduced, along
with the loss in revenue that these products bring. In order to
obtain knowledge about the suitability between logs and sawn
products, one needs individually associated data between the
two.With individually associated data, it is subsequently pos-
sible to build log-sorting models in which the inner and outer
characteristics of the logs can be connected to a specific qual-
ity and/or volume yield of the sawn product. Traditionally,
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these connected data have been the product of test sawings
where logs have been manually marked and then tracked and
recorded from the sawmill’s log sorting through green sorting
station. This is, however, a time- and money-consuming task,
which suggests that an automated technique for achieving the
individually associated data would be well appreciated.

Modern sawmills often have sophisticated measurement
equipment that generates large quantities of data at an indi-
vidual level. These data are collected at certain points along
the production chain, but are unfortunately almost exclusively
used as a means to control the production process close to the
measurement point. Most of the generated data for a specific
piece of wood are therefore discarded after the piece has
moved past the measurement point. If the data for each spe-
cific piece were to be collected and stored in a database, the
final product could then “be considered as an information in-
tensive product” (Uusijärvi 2003). The challenge is therefore
not to generate data, but to connect the generated data to each
individual piece of wood.

Since sawmills have a diverging flow, andmodern sawmills
have high production speed, the tracing and storing of data are
not well suited for manual labor. A better alternative for han-
dling the tracing and tracking is some form of automated iden-
tification (McFarlane and Sheffi 2002). There are a number of
alternative methods for practically making the connection be-
tween measurement data and the individual piece of wood.
Many of these alternatives are based on some form of mark-
ing/reading technique. Two well-known methods are barcode
identification and radio frequency identification (RFID). Bar-
code identification is a noncontact method used in almost ev-
ery supermarket checkout counter in which the bars in the
code are optically read by a laser scanner. RFID is also a non-
contact method wherein an antenna picks up the RFID tag’s
unique identification number when it enters the antenna’s
reading range (Finkenzeller 2003). For forestry traceability
applications, RFID is probably better suited due to the fact
that the tags can be read without an optical scan, thus making
the dirt and handling involved in logging almost noninfluen-
tial on the reading result, as opposed to reading barcode iden-
tification under the same circumstances. The drawback is the
price for the RFID tags. A sawmill that produces 150,000 m3

of sawn wood and has an average log volume of 0.18 m3

handles approximately 1.8 million logs annually. The price
for RFID tags is approximately 1 to 2 € (U.S. $0.75 to $1.50)
per tag (Uusijärvi 2003). If every log is to be tagged, the an-
nual cost for tags alone will then be millions of dollars.

An alternative and more cost-effective way of identifying
individual pieces of wood is to use the already existing mea-
surement data andmake identification bymeans of the finger-
print approach (Chiorescu 2003, Flodin et al. 2007). The fin-
gerprint approach rests on the principle that each piece of
wood is a unique individual with unique features. These can
be the piece’s outer as well as inner features. If one could
measure these individual features accurately enough, it would
then be possible to identify individual pieces in the production
chain in the same way that human beings can be identified by
the use of their fingerprints. Microwaves have shown poten-
tial in fingerprint tracing of sawn wood (Fuentealba et al.
2004). This method might, however, be more suited for trac-
ing wood that has been dried and kept in a constant climate
rather that tracing through the sawmill process, since the
wood’s dielectric properties change when going from frozen

to thawed and from green to dried conditions (Lundgren et al.
2005).

If one wants to make a fingerprint connection between logs
at the log sorting station and sawn center yield products at the
green sorting station, there are, among others, two properties
that remain unchanged between the two locations if one ap-
plies a typical Scandinavian sawing pattern: the total length of
the pieces and the lengthwise positioning of knots in the
pieces. The purpose of this study is to investigate if the im-
portant individual connection between log and sawn product
can be made by using the fingerprint approach along with
length and x-ray information from the log sorting station com-
bined with length and surface scanning information from the
green sorting station.

Materials and methods
The sawmill that hosted this study was a large size mill situ-

ated in northern Sweden with an annual production of ap-
proximately 400,000 m3 of sawn timber. The sawmill handles
only Scots pine (Pinus sylvestris) which also was the only
species included in this study. Scots pine is commonly sawn in
Scandinavia and has well-defined knot whorls with no knots
in between the main whorls. The logs involved in the study
were randomly chosen from six different top diameter groups.
All logs were sawn with a two-ex sawing pattern into center
yield planks of six different dimensions. The sawing patterns
referred to in this study are typical Scandinavian patterns ap-
plied on local rawmaterial where the length of the sawn center
yield planks is equal to the length of the log they are sawn
from. A two-ex pattern means that each log is broken down
into two center yield planks with surrounding sideboards. No
sideboardswere however included in the study.Table 1 shows
the data for the logs in the study.

The data that were used in this study were collected at two
points in the production chain from systems that are used in
the sawmill’s daily production. The first point was the saw-
mill’s log sorting station where data from the logs were col-
lected with a one-directional x-ray log scanner from Rema
Control AB (RemaControl 2007) in combination with a 3-D
optical scanner from MPM Engineering Ltd. (MPM 2007).
Figure 1 shows the measurement equipment used in the
study, and Figure 2 shows an x-ray attenuation image of a
Scots pine log. The data extracted from these systemswere the
total length of the logs according to the 3-D scanner and the
position and length of the whorls in the logs according to the
x-ray log scanner. The second point of data collection was a
cross-fed Finscan Boardmaster surface-scanning system (Fin-
scan 2007) situated at the sawmill’s green sorting station. The
total length and the positions of surface knots were recorded

Table 1. — The Scots pine material used in the study.

Logs Planks

Group Quantity Top diameter Quantity Thickness Width

(mm) - - - - - - - (mm) - - - - - -

1 70 153 to 187 140 50 100

2 70 174 to 213 140 50 125

3 70 193 to 229 140 50 150

4 40 208 to 260 80 63 150

5 75 225 to 277 150 63 175

6 110 253 to 321 220 63 200
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for each of the sawn planks. The order in which the logs and
planks passed the measurement systems were written down
manually from the end surfaces, which had been stampedwith
identification information (Skog and Oja 2007).
The analyses of the collected data were performed using

MatLab 7.3 (The MathWorks Inc. 2007). Log groups 1 and 2
were used together for analysis and construction of the finger-
print-matching algorithm, while log groups 3, 4, 5, and 6 were
used to verify the results. The first step in the analysis, before
working on the matching algorithm, was to investigate the
correlation between the total length measurements from the
log sorting and green sorting stations. The unique identifica-
tion allowed the sawn planks’ length measurements to be in-
dividually compared with the length measurements from the
logs. This was done by subtracting each plank’s total length
from the total length of its corresponding log. The mean and
SD values were then calculated for the variation in difference
between the two measurement points.
Once the length correlation was known, an algorithm was

constructed to perform fingerprint matching between logs and
planks. The algorithm was designed to work in a three-step
sequence. The first and second steps in the sequence read the
data into two matrices, first from the logs and then from the
planks. Each row in the log matrix contained the identifica-
tion, the total length (cm), and the starting position and length
(mm) of all knot whorls found in that specific log measured
from the top end, see Figure 3. The information in the plank
matrix was set up in the same way, with the difference that it
contained the lengthwise starting point and length (mm) of all
surface knots found on all four sides of the planks measured
from the top end, see Figure 4. Due to a filter in the x-ray
scanner’s software, the scanner needs a short distance before

it starts registering information. Therefore, knots that were
situated within 200 mm of the top and butt ends of the planks
were disregarded.

The third and final step of the sequence was the actual
matching procedure. The algorithmworked iteratively by tak-
ing one plank at a time and comparing its surface knot posi-
tions with the positions of knot whorls for each log that had
passed a length filtering. The length filter was based on the
length correlation mean and SD and was used to screen
through all the ingoing logs in order to exclude all logs that
had a length that could not realistically belong to the actual
plank being compared. The comparison between plank and
log was made by creating two zero vectors, one for the plank
and one for the log, with the same number of elements as the
actual planks length in millimeters. These vectors were then
filled with ones in the elements corresponding to positions of
surface knots on planks and positions of knot whorls in logs.
TheMatLab autocorrelation function “xcorr” was used to cal-
culate the correlation between the vectors, i.e., the correlation
in knot positions between plank and log. The result from the
function was normalized so that a total agreement would give
a resulting value of 1.0, and a total disagreement would give a
resulting value of zero. Matching between actual plank and
the length-filtered logs was then done to the log that showed
the highest normalized value. When all planks had been com-
pared, the total number and percentage of correctly matched
planks was calculated. In order to find well-functioning set-
tings for the algorithm, different values were tested for the
logs’ length filter as well as for the distance over which knots
were disregarded in the plank ends. The values tested were
between 3 and 10 cm for the length filter and between 100 and
400 mm for the disregarding of end knots.

To increase the confidence in the knot agreement matching
between actual plank and length filtered logs, the requirement
for a certain minimum difference value between the highest
normalized agreement value and second highest, was incor-
porated into the algorithm. If this minimum difference value

Figure 1. — Industrial measurement equipment used to col-
lect log data. 3-D optical scanner (left) and x-ray log scanner
(right).

Figure 2. — X-ray attenuation image of a Scots pine log.

Figure 3. — Lengthwise positions of knot whorls in a log.

Figure 4. — Lengthwise positions of surface knots on a plank.
The planks four faces are summarized (bottom).
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wasn’t met, the actual plank was considered to be of too great
a risk to be matched to the wrong log and subsequently not
included in the finalmatching percentage. Differentminimum
difference values were tried, and the final matching percent-
age along with the number of planks left out was recorded. An
analysis was also carried out on the left-out planks and their
corresponding logs to investigate if they showed some sort of
common characteristics, such as number or size of knots. The
final stage of the study was to verify the results on groups 3, 4,
5, and 6. This verification would also show if the physical size
of the logs and planks had an impact on the results.

Results
Figures 5 and 6 show how the agreement in the planks’

surface knots and the logs’ knot whorls can be used to pair
together a certain plankwith a certain log. The results from the
total length correlations between logs and planks gave a mean
value of −1.2 cm and a SD of 1.6 cm, thus revealing that the
planks are generally measured as a little longer than their cor-
responding logs. This result was used to initially set the length
filter to ±5 cm of the actual plank’s length (with mean correc-
tion). The length filter gave in itself two mismatches, due to a
difference inmeasured length ofmore than 10 cm between log
sorting and green sorting station.
The results of the first matching runwere that 268 of the 280

planks could be matched to the correct log, yielding a success
rate of 95.7 percent. After trying different values, the initial
settings with length filter span at ±5 cm and end knot disre-
garding at 200 mm proved to be the best settings for the
matching algorithm. Different settings showed no significant
impact on the matching result. Similar results were found us-
ing planks from groups 3, 4, 5, and 6, as shown inTable 2.The
confidence for all groups could also be increased by incorpo-
rating the previously mentioned minimum difference value
between the first and second log with the highest normalized
knot agreement.Figure 7 shows that the percentage of correct
matchings increases with increased minimum difference
value, and Figure 8 shows how the percentage of planks that
were excluded from the matching procedure also increases
when failing to fulfill the minimum difference value.
In order to find out if the excluded planks and their corre-

sponding logs had any common characteristics, four histo-
grams were plotted that compare mismatched and correctly

matched planks by 2 knot characteristics found in both the
planks and the logs. The knot characteristics plotted were the
amount and lengthwise size of surface knots for the planks
and the amount and lengthwise size of knot whorls for the
logs. Figures 9 and 10 show the results for the planks, and
Figures 11 and 12 show the results for the logs. As Figures 9
through 12 illustrate, no obvious grouping of the mismatched
planks and logs could be found.

Discussion
The results from this study are very encouraging for further

development of this fingerprint tracing method. The method
can, as Figures 7 and 8 show, be strengthened by applying a

Figure 5. — A correct matching shows good agreement be-
tween the plank’s surface knot positions (light gray) and the
log’s knot whorl positions (black).

Figure 6. — An incorrect matching shows poor agreement
between the plank’s surface knot positions (light gray) and the
log’s knot whorl positions (black).

Table 2. — Verification of results.

Thickness Width
Number of

ingoing planks

Number of
correctly

matched planks

Percentage of
correctly

matched planks

50 100/125 280 268 95.7

50 150 140 136 97.1

63 150 80 77 96.3

63 175 150 146 97.3

63 200 220 212 96.4

Figure 7. — Illustration of how more correct matchings can be
achieved with the minimum difference value.
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minimum difference value at the expense of throwing out
some of the ingoing data. As Figures 9 through 12 show, the
exclusion of planks does not seem to take away any of the total
variation in the ingoing material, which is very positive. With
the results shown inTable 2, onemight argue that the need for
a minimum difference value is overkill if the object of the
tracing is to develop statistical probability models for process
control and process improvements (Maness 1993).

In this study, the occurrence of multiple hits, i.e., the same
log beingmatched tomore than two planks, was not given any
special treatment. In order to further increase the confidence

level of the matching, the algorithm could be extended to ex-
clude logs that have received multiple hits. Another interest-
ing approach in attempting to enhance thematching algorithm
would be to start by matching together the planks that have
been sawn from the same log and then use the combined knot
information from these planks in order to find their corre-
sponding log.

The results indicate that fingerprint tracing could be a very
cost-effective way to collect and connect data, as opposed to
the traditional test sawings which involves a lot of manual
labor in the data collection. This connected data are essential
for following up whether changes in process parameters such
as, for example, log class limits, have had the desired effect.
The individually associated data could also be used to form
the foundation on which to build log-sorting models, since
one gets the connection between the logs’ inner and outer
properties and the sawn planks’ quality and volume yield. A
large scale practical application would need to include a da-
tabase and some form of breakpoints to indicate when batches
are moved to different steps in the production. The break-
points would make it possible to check off logs from the cor-
rect batch in the databasewhen a suitablematch is found in the
batch of sawn planks from the green sorting station scanning.

This study was conducted on Scots pine only. It is therefore
difficult to say how the fingerprint tracing approach would
work onNorway spruce (Picea abies), which is the othermain
species ofwood sawn in Sweden. The initial view is that it will
probably be more difficult, since Norway spruce doesn’t have

Figure 8. — Illustration of how the number of excluded planks
increases with the minimum difference value.

Figure 9. — The number of surface knots in correctly and
incorrectly matched planks.

Figure 10. — The average lengthwise size of surface knots in
correctly and incorrectly matched planks.

Figure 11. — The number of knot whorls in correctly and
incorrectly matched logs.

Figure 12. — The average lengthwise size of knot whorls in
correctly and incorrectly matched logs.

104 NOVEMBER 2008



as clearly defined knot whorls as Scots pine, due to the fact
that branches also grow in between the main knot whorls in
the living tree. The species are however normally kept sepa-
rate at the sawmill and sawn one species at a time. Another
interesting investigation would be to try fingerprint tracing on
sideboards. Again, the initial view is that it will probably be
more difficult, since the occurrence of surface knots decreases
with increased distance from the logs center. The greater chal-
lenge would therefore be to find sideboards from large sawing
patterns that have been applied on butt logs, but it would be
very worthwhile to investigate the possibilities of tracing both
Norway spruce and sideboards with this method.

The matching algorithm that was developed in this study
relies on the logs and the sawn lumber to be of equal length. In
order to handle sawn lumber that has been cross cut or taper
sawn before surface scanning the present algorithm would
need some further development.

Conclusions
The results show a high potential for further development

and realization of fingerprint tracing between log sorting and
green sorting station into a practical application for process
control and process improvement. The results of the matching
procedure can be strengthened and secured without system-
atically losing any of the natural variation in the ingoing
material.
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