Svenskt Trä Logo

10.2 Inre krafter och stödreaktioner

Publicerad 2017-01-19

Treledsramen är statiskt bestämd och inre krafter i tvärsnittet kan därför beräknas med jämviktsekvationer. Den geometriska formen medför dock ofta ett rätt omfattande beräkningsarbete som med fördel kan utföras med hjälp av dator.

Vid jämnt fördelad, osymmetrisk belastning kan reaktionskrafter och inre krafter för en treledsram enligt figur 10.2 beräknas med hjälp av följande förenklade uttryck.

Observera att ekvation 10.4 och 10.5 gäller för takvinkel α = 14°. För större takvinklar ger dessa ekvationer resultat på säkra sidan.

Vertikal stödreaktion:

10.1    \({R_\rm A} = \frac{{\left( {3 \cdot {q_1} + {q_2}} \right) \cdot l}}{8}\)

10.2    \({R_\rm C} = \frac{{\left( {{q_1} + 3 \cdot {q_2}} \right) \cdot l}}{8}\)

Horisontell stödreaktion:

10.3    \(H = \frac{{\left( {{q_1} + {q_2}} \right) \cdot {l^2}}}{{16 \cdot f}}\)

Maximal normalkraft i ramhörn:

10.4    \(N = 0,79 \cdot \left( {{R_\rm c} - 0,38{q_2}r} \right) + 0,62 \cdot H\)

Maximalt moment i ramhörn:

10.5    \(M = \left( {a + 0,62r} \right) \cdot H - 0,21r \cdot \left( {{R_\rm c} - 0,38{q_2} \cdot r} \right)\)

Tvärkraft i nock (vertikal):

10.6    \({V_\rm B} = \frac{{\left( {{q_1} - {q_2}} \right) \cdot l}}{8}\)

Observera att för treledsramar med ett vertikalt ramben, till exempel en ram med fingerskarvat hörn, kan böjmomentet i ett sådant ramhörn räknas som M = H · h’, se ekvation 10.5 och figur 10.2.

Treledsram med krökt ramhörn, beteckningar.
Figur 10.2
Treledsram med krökt ramhörn, beteckningar.

TräGuiden är den digitala handboken för trä och träbyggande och innehåller information om materialet trä samt instruktioner för byggande med trä.

På din mobil fungerar TräGuiden bäst i stående läge.Ok

Hantera dina pins

Hantera pins fungerar bäst om du inte är i privat/inkognitoläge. OBS! Dina pins sparas i datorns lokala minne.
Åtgärder som innebär raderande av kakor på datorn kan ofta även medföra att det lokala minnet rensas med följden att dina sparade pins försvinner.

Du har inga sparade pins

Hantera pins fungerar bäst om du inte är i privat/inkognitoläge. OBS! Dina pins sparas i datorns lokala minne.
Åtgärder som innebär raderande av kakor på datorn kan ofta även medföra att det lokala minnet rensas med följden att dina sparade pins försvinner.

pin

Du vet väl att du kan spara sidor till senare. Samla här pins för de sidor du besöker ofta och enkelt vill kunna återkomma till.

  • Lägg till
  • Du har redan lagt till den här sidan.

Skicka pins

Ett enkelt sätt att spara dina pins är att maila dem

Du har nu skickat dina pins!

Något gick fel. Kontrollera e-postadressen och prova igen.

Dela sidan