Svenskt Trä Logo

5.6 Kontroll av styvheten hos takstolens överram

Publicerad 2021-11-02

Styvhet

Överramens utböjning i veka riktningen ska begränsas till cirka Löverram ⁄ 500 och total utböjning inklusive parallellfackverk bör begränsas till cirka 20 mm. Det innebär att deformationer i infästningar bör beaktas och kontrolleras.

Takstolarnas överram stabiliseras av läkt som är infäst i takstolen och parallellfackverk eller yttervägg. Det innebär att det finns tre delar som påverkar överramens förskjutning, infästning mellan läkt och takstol, infästning mellan läkt och parallellfackverk/yttervägg och läktens längdförändring.

Kontroll av att förskjutningen inte blir för stor görs genom att införa fjäderstyvheten, C:

\(C=\displaystyle \frac{F_{\mathrm{b}}}{v}\)

där:

C   är fjäderstyvheten.
Fb  är stagningskraften.
v   är förskjutningen.

För exempelvis takläkt enligt ovan kan totala fjäderstyvheten betraktas som tre seriekopplade fjädrar enligt:

\(C=\displaystyle \frac{1}{[(\frac{1}{C_{1}})+(\frac{1}{C_{2}})+(\frac{1}{C_{3}})]}\)

där:

C1 är styvheten hos förbandet mellan överram och bärläkt.
C2 är styvheten hos förbandet mellan bärläkt och parallellfackverket/vägg.
C3 är styvheten med beaktande av bärläktens längd.

\(C_{1}=\displaystyle \frac{2}{3}\cdot K_{\mathrm{s}\mathrm{e}\mathrm{r}}\cdot n_{1\mathfrak{n}\mathrm{a}\mathrm{i}1}\)

där:

Kser    är spikens styvhet.
n1nail  är antalet spik i respektive förband.


\(C_{2}=\displaystyle \frac{2}{3}\cdot K_{\mathrm{s}\mathrm{e}\mathrm{r}}\cdot\frac{n_{2\mathrm{n}\mathrm{a}\mathrm{i}1}}{n_{\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}}}\)

där:

n2nail  är antalet spik i det aktuella förbandet.
nside       är antalet takstolar som stagas i aktuell riktning.
Exempelvis 8 takstolar mellan parallellfackverk ger nside = 4.

\(C_{3}=\displaystyle \frac{E_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}}\cdot A_{1\mathrm{a}\mathrm{k}\mathrm{t}}}{\gamma_{\mathrm{M}}\cdot l_{\mathrm{b}\mathrm{a}\mathrm{t},\mathrm{e}\mathrm{f}}}\)


\(l_{\mathrm{b}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{f}}=\displaystyle \frac{1}{2}\cdot \mathrm{n}_{\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}}\cdot(n_{\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}}+1)\cdot s\)

där:

Aläkt      är läktens tvärsnittsarea.
lbat,ef    är läktens effektiva längd.
γ       är partialkoefficient för en materialegenskap. Sätts till 1,3.
Emean  är elasticitetsmodulens medelvärde i MPa.
s         är centrumavstånd mellan takstolar.

I de flesta fall betraktas parallellfackverket som oeftergivligt. Likartad kontroll bör dock göras även med avseende på dragstaget och parallell- fackverkets förskjutning.

Dimensionerande krafter vid varje sidostöd, Fd, fås enligt ekvation 5.2, sidan 5.4.2 Lokal stabilitet för tryckta bärverksdelar, och ekvation 5.3, sidan 5.4.2 Lokal stabilitet för tryckta bärverksdelar.

Fd gäller under förutsättningen att fjäderstyvheten i varje stöd uppgår till ett värde som beräknas enligt ekvation 5.1, sidan 5.4.2 Lokal stabilitet för tryckta bärverksdelar. För att uppfylla detta ska bevisas att styvheten KdC vid maximala avståndet mellan infästningarna, a, används i beräkningarna oavsett om det i verkligheten används kortare avstånd. Styvheten beror även av förskjutningar i förband mellan läkt och takstolar respektive infästningar av parallellfackverk.

Spikförbandens styvhet

Styvheten av ett spikförband mellan två brädor utan förborrning i bruksgräns kan bestämmas enligt:

\(K_{\mathrm{s}\mathrm{e}\mathrm{r}}=\displaystyle \rho_{\mathrm{m}}^{1,5}\cdot\frac{d^{08}}{30}\)

där:

ρm   är medeldensiteten i kg/m3.
d    är spikens diameter i mm.

För stål mot trä kan Kser fördubblas.

Det teoretiska värdet för styvheten, Kd, kan bestämmas enligt SS-EN 1995-1-1 enligt:

\(K_{\mathrm{d}}=\displaystyle \frac{\frac{2}{3}\cdot K_{\mathrm{s}\mathrm{e}\mathrm{r}}}{\gamma_{\mathrm{M}}\cdot(1+\psi_{2}\cdot k_{\mathrm{d}\mathrm{e}\mathrm{f}})}\)

där:

kdef är en faktor för krypdeformationen som tar hänsyn till aktuell klimatklass. För ett förband bestående av träbaserade delar med samma tidsberoende bör enligt SS-EN 1995-1-1 värdet på kdef  fördubblas. För ett förband bestående av två träbaserade delar med olika tidsberoende bör den slutliga deformationen beräknas med användande av:

\(k_{\mathrm{d}\mathrm{e}\mathrm{f}}=2\sqrt{k_{\mathrm{d}\mathrm{e}\mathrm{f}1}k_{\mathrm{d}\mathrm{e}\mathrm{f}2}}\)

där:

kdef,1     och
kdef,2     är deformationsfaktorn för respektive del i förbandet.
Kser        är förskjutningsmodulen.
ψ2 är faktorn för det kvasipermanenta värdet på den last som ger störst spänning i förhållande till hållfasthet. Sätts till 0 för snö- och vindlast och om denna last är permanent bör ψ2 ersättas med värdet 1.

TräGuiden är den digitala handboken för trä och träbyggande och innehåller information om materialet trä samt instruktioner för byggande med trä.

På din mobil fungerar TräGuiden bäst i stående läge.Ok

Hantera dina pins

Hantera pins fungerar bäst om du inte är i privat/inkognitoläge. OBS! Dina pins sparas i datorns lokala minne.
Åtgärder som innebär raderande av kakor på datorn kan ofta även medföra att det lokala minnet rensas med följden att dina sparade pins försvinner.

Du har inga sparade pins

Hantera pins fungerar bäst om du inte är i privat/inkognitoläge. OBS! Dina pins sparas i datorns lokala minne.
Åtgärder som innebär raderande av kakor på datorn kan ofta även medföra att det lokala minnet rensas med följden att dina sparade pins försvinner.

pin

Du vet väl att du kan spara sidor till senare. Samla här pins för de sidor du besöker ofta och enkelt vill kunna återkomma till.

  • Lägg till
  • Du har redan lagt till den här sidan.

Skicka pins

Ett enkelt sätt att spara dina pins är att maila dem

Du har nu skickat dina pins!

Något gick fel. Kontrollera e-postadressen och prova igen.

Dela sidan